| Step | Hyp | Ref | Expression | 
						
							| 1 |  | constrrtlc.s |  |-  ( ph -> S C_ CC ) | 
						
							| 2 |  | constrrtlc.a |  |-  ( ph -> A e. S ) | 
						
							| 3 |  | constrrtlc.b |  |-  ( ph -> B e. S ) | 
						
							| 4 |  | constrrtlc.c |  |-  ( ph -> C e. S ) | 
						
							| 5 |  | constrrtlc.e |  |-  ( ph -> E e. S ) | 
						
							| 6 |  | constrrtlc.f |  |-  ( ph -> F e. S ) | 
						
							| 7 |  | constrrtlc.t |  |-  ( ph -> T e. RR ) | 
						
							| 8 |  | constrrtlc.1 |  |-  ( ph -> X = ( A + ( T x. ( B - A ) ) ) ) | 
						
							| 9 |  | constrrtlc.2 |  |-  ( ph -> ( abs ` ( X - C ) ) = ( abs ` ( E - F ) ) ) | 
						
							| 10 |  | constrrtlc.q |  |-  Q = ( ( ( * ` B ) - ( * ` A ) ) / ( B - A ) ) | 
						
							| 11 |  | constrrtlc.m |  |-  M = ( ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) / Q ) | 
						
							| 12 |  | constrrtlc.n |  |-  N = ( -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) / Q ) | 
						
							| 13 |  | constrrtlc1.1 |  |-  ( ph -> A =/= B ) | 
						
							| 14 | 1 2 | sseldd |  |-  ( ph -> A e. CC ) | 
						
							| 15 | 14 | cjcld |  |-  ( ph -> ( * ` A ) e. CC ) | 
						
							| 16 | 1 3 | sseldd |  |-  ( ph -> B e. CC ) | 
						
							| 17 | 16 | cjcld |  |-  ( ph -> ( * ` B ) e. CC ) | 
						
							| 18 | 17 15 | subcld |  |-  ( ph -> ( ( * ` B ) - ( * ` A ) ) e. CC ) | 
						
							| 19 | 16 14 | subcld |  |-  ( ph -> ( B - A ) e. CC ) | 
						
							| 20 | 13 | necomd |  |-  ( ph -> B =/= A ) | 
						
							| 21 | 16 14 20 | subne0d |  |-  ( ph -> ( B - A ) =/= 0 ) | 
						
							| 22 | 18 19 21 | divcld |  |-  ( ph -> ( ( ( * ` B ) - ( * ` A ) ) / ( B - A ) ) e. CC ) | 
						
							| 23 | 10 22 | eqeltrid |  |-  ( ph -> Q e. CC ) | 
						
							| 24 | 14 23 | mulcld |  |-  ( ph -> ( A x. Q ) e. CC ) | 
						
							| 25 | 15 24 | subcld |  |-  ( ph -> ( ( * ` A ) - ( A x. Q ) ) e. CC ) | 
						
							| 26 | 1 4 | sseldd |  |-  ( ph -> C e. CC ) | 
						
							| 27 | 26 | cjcld |  |-  ( ph -> ( * ` C ) e. CC ) | 
						
							| 28 | 25 27 | subcld |  |-  ( ph -> ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) e. CC ) | 
						
							| 29 | 26 23 | mulcld |  |-  ( ph -> ( C x. Q ) e. CC ) | 
						
							| 30 | 28 29 | subcld |  |-  ( ph -> ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) e. CC ) | 
						
							| 31 | 16 14 | cjsubd |  |-  ( ph -> ( * ` ( B - A ) ) = ( ( * ` B ) - ( * ` A ) ) ) | 
						
							| 32 | 19 21 | cjne0d |  |-  ( ph -> ( * ` ( B - A ) ) =/= 0 ) | 
						
							| 33 | 31 32 | eqnetrrd |  |-  ( ph -> ( ( * ` B ) - ( * ` A ) ) =/= 0 ) | 
						
							| 34 | 18 19 33 21 | divne0d |  |-  ( ph -> ( ( ( * ` B ) - ( * ` A ) ) / ( B - A ) ) =/= 0 ) | 
						
							| 35 | 10 | neeq1i |  |-  ( Q =/= 0 <-> ( ( ( * ` B ) - ( * ` A ) ) / ( B - A ) ) =/= 0 ) | 
						
							| 36 | 34 35 | sylibr |  |-  ( ph -> Q =/= 0 ) | 
						
							| 37 | 30 23 36 | divcld |  |-  ( ph -> ( ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) / Q ) e. CC ) | 
						
							| 38 | 7 | recnd |  |-  ( ph -> T e. CC ) | 
						
							| 39 | 38 19 | mulcld |  |-  ( ph -> ( T x. ( B - A ) ) e. CC ) | 
						
							| 40 | 14 39 | addcld |  |-  ( ph -> ( A + ( T x. ( B - A ) ) ) e. CC ) | 
						
							| 41 | 8 40 | eqeltrd |  |-  ( ph -> X e. CC ) | 
						
							| 42 | 37 41 | mulcomd |  |-  ( ph -> ( ( ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) / Q ) x. X ) = ( X x. ( ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) / Q ) ) ) | 
						
							| 43 | 11 | a1i |  |-  ( ph -> M = ( ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) / Q ) ) | 
						
							| 44 | 43 | oveq1d |  |-  ( ph -> ( M x. X ) = ( ( ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) / Q ) x. X ) ) | 
						
							| 45 | 41 30 23 36 | divassd |  |-  ( ph -> ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) / Q ) = ( X x. ( ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) / Q ) ) ) | 
						
							| 46 | 42 44 45 | 3eqtr4d |  |-  ( ph -> ( M x. X ) = ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) / Q ) ) | 
						
							| 47 | 12 | a1i |  |-  ( ph -> N = ( -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) / Q ) ) | 
						
							| 48 | 46 47 | oveq12d |  |-  ( ph -> ( ( M x. X ) + N ) = ( ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) / Q ) + ( -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) / Q ) ) ) | 
						
							| 49 | 41 30 | mulcld |  |-  ( ph -> ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) e. CC ) | 
						
							| 50 | 26 28 | mulcld |  |-  ( ph -> ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) e. CC ) | 
						
							| 51 | 41 | sqvald |  |-  ( ph -> ( X ^ 2 ) = ( X x. X ) ) | 
						
							| 52 | 51 | oveq1d |  |-  ( ph -> ( ( X ^ 2 ) x. Q ) = ( ( X x. X ) x. Q ) ) | 
						
							| 53 | 41 41 23 | mulassd |  |-  ( ph -> ( ( X x. X ) x. Q ) = ( X x. ( X x. Q ) ) ) | 
						
							| 54 | 52 53 | eqtrd |  |-  ( ph -> ( ( X ^ 2 ) x. Q ) = ( X x. ( X x. Q ) ) ) | 
						
							| 55 | 41 23 | mulcld |  |-  ( ph -> ( X x. Q ) e. CC ) | 
						
							| 56 | 41 55 | mulcld |  |-  ( ph -> ( X x. ( X x. Q ) ) e. CC ) | 
						
							| 57 | 54 56 | eqeltrd |  |-  ( ph -> ( ( X ^ 2 ) x. Q ) e. CC ) | 
						
							| 58 | 57 49 50 | addsubd |  |-  ( ph -> ( ( ( ( X ^ 2 ) x. Q ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) = ( ( ( ( X ^ 2 ) x. Q ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) ) | 
						
							| 59 | 54 | oveq1d |  |-  ( ph -> ( ( ( X ^ 2 ) x. Q ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) = ( ( X x. ( X x. Q ) ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) ) | 
						
							| 60 | 41 28 29 | subdid |  |-  ( ph -> ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) = ( ( X x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) - ( X x. ( C x. Q ) ) ) ) | 
						
							| 61 | 59 60 | oveq12d |  |-  ( ph -> ( ( ( ( X ^ 2 ) x. Q ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) = ( ( ( X x. ( X x. Q ) ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) + ( ( X x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) - ( X x. ( C x. Q ) ) ) ) ) | 
						
							| 62 | 41 28 | mulcld |  |-  ( ph -> ( X x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) e. CC ) | 
						
							| 63 | 41 29 | mulcld |  |-  ( ph -> ( X x. ( C x. Q ) ) e. CC ) | 
						
							| 64 | 56 62 50 63 | addsub4d |  |-  ( ph -> ( ( ( X x. ( X x. Q ) ) + ( X x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) - ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( X x. ( C x. Q ) ) ) ) = ( ( ( X x. ( X x. Q ) ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) + ( ( X x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) - ( X x. ( C x. Q ) ) ) ) ) | 
						
							| 65 | 41 26 55 28 | submuladdd |  |-  ( ph -> ( ( X - C ) x. ( ( X x. Q ) + ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) = ( ( ( X x. ( X x. Q ) ) + ( X x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) - ( ( C x. ( X x. Q ) ) + ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) ) ) | 
						
							| 66 | 9 | oveq1d |  |-  ( ph -> ( ( abs ` ( X - C ) ) ^ 2 ) = ( ( abs ` ( E - F ) ) ^ 2 ) ) | 
						
							| 67 | 41 26 | subcld |  |-  ( ph -> ( X - C ) e. CC ) | 
						
							| 68 | 67 | absvalsqd |  |-  ( ph -> ( ( abs ` ( X - C ) ) ^ 2 ) = ( ( X - C ) x. ( * ` ( X - C ) ) ) ) | 
						
							| 69 | 1 5 | sseldd |  |-  ( ph -> E e. CC ) | 
						
							| 70 | 1 6 | sseldd |  |-  ( ph -> F e. CC ) | 
						
							| 71 | 69 70 | subcld |  |-  ( ph -> ( E - F ) e. CC ) | 
						
							| 72 | 71 | absvalsqd |  |-  ( ph -> ( ( abs ` ( E - F ) ) ^ 2 ) = ( ( E - F ) x. ( * ` ( E - F ) ) ) ) | 
						
							| 73 | 66 68 72 | 3eqtr3d |  |-  ( ph -> ( ( X - C ) x. ( * ` ( X - C ) ) ) = ( ( E - F ) x. ( * ` ( E - F ) ) ) ) | 
						
							| 74 | 8 | fvoveq1d |  |-  ( ph -> ( * ` ( X - C ) ) = ( * ` ( ( A + ( T x. ( B - A ) ) ) - C ) ) ) | 
						
							| 75 | 40 26 | cjsubd |  |-  ( ph -> ( * ` ( ( A + ( T x. ( B - A ) ) ) - C ) ) = ( ( * ` ( A + ( T x. ( B - A ) ) ) ) - ( * ` C ) ) ) | 
						
							| 76 | 14 39 | cjaddd |  |-  ( ph -> ( * ` ( A + ( T x. ( B - A ) ) ) ) = ( ( * ` A ) + ( * ` ( T x. ( B - A ) ) ) ) ) | 
						
							| 77 | 38 19 | cjmuld |  |-  ( ph -> ( * ` ( T x. ( B - A ) ) ) = ( ( * ` T ) x. ( * ` ( B - A ) ) ) ) | 
						
							| 78 | 7 | cjred |  |-  ( ph -> ( * ` T ) = T ) | 
						
							| 79 | 14 39 8 | mvrladdd |  |-  ( ph -> ( X - A ) = ( T x. ( B - A ) ) ) | 
						
							| 80 | 79 39 | eqeltrd |  |-  ( ph -> ( X - A ) e. CC ) | 
						
							| 81 | 80 38 19 21 | divmul3d |  |-  ( ph -> ( ( ( X - A ) / ( B - A ) ) = T <-> ( X - A ) = ( T x. ( B - A ) ) ) ) | 
						
							| 82 | 79 81 | mpbird |  |-  ( ph -> ( ( X - A ) / ( B - A ) ) = T ) | 
						
							| 83 | 78 82 | eqtr4d |  |-  ( ph -> ( * ` T ) = ( ( X - A ) / ( B - A ) ) ) | 
						
							| 84 | 83 31 | oveq12d |  |-  ( ph -> ( ( * ` T ) x. ( * ` ( B - A ) ) ) = ( ( ( X - A ) / ( B - A ) ) x. ( ( * ` B ) - ( * ` A ) ) ) ) | 
						
							| 85 | 80 19 18 21 | div32d |  |-  ( ph -> ( ( ( X - A ) / ( B - A ) ) x. ( ( * ` B ) - ( * ` A ) ) ) = ( ( X - A ) x. ( ( ( * ` B ) - ( * ` A ) ) / ( B - A ) ) ) ) | 
						
							| 86 | 10 | oveq2i |  |-  ( ( X - A ) x. Q ) = ( ( X - A ) x. ( ( ( * ` B ) - ( * ` A ) ) / ( B - A ) ) ) | 
						
							| 87 | 85 86 | eqtr4di |  |-  ( ph -> ( ( ( X - A ) / ( B - A ) ) x. ( ( * ` B ) - ( * ` A ) ) ) = ( ( X - A ) x. Q ) ) | 
						
							| 88 | 41 14 23 | subdird |  |-  ( ph -> ( ( X - A ) x. Q ) = ( ( X x. Q ) - ( A x. Q ) ) ) | 
						
							| 89 | 84 87 88 | 3eqtrd |  |-  ( ph -> ( ( * ` T ) x. ( * ` ( B - A ) ) ) = ( ( X x. Q ) - ( A x. Q ) ) ) | 
						
							| 90 | 77 89 | eqtrd |  |-  ( ph -> ( * ` ( T x. ( B - A ) ) ) = ( ( X x. Q ) - ( A x. Q ) ) ) | 
						
							| 91 | 90 | oveq2d |  |-  ( ph -> ( ( * ` A ) + ( * ` ( T x. ( B - A ) ) ) ) = ( ( * ` A ) + ( ( X x. Q ) - ( A x. Q ) ) ) ) | 
						
							| 92 | 15 55 24 | addsub12d |  |-  ( ph -> ( ( * ` A ) + ( ( X x. Q ) - ( A x. Q ) ) ) = ( ( X x. Q ) + ( ( * ` A ) - ( A x. Q ) ) ) ) | 
						
							| 93 | 76 91 92 | 3eqtrd |  |-  ( ph -> ( * ` ( A + ( T x. ( B - A ) ) ) ) = ( ( X x. Q ) + ( ( * ` A ) - ( A x. Q ) ) ) ) | 
						
							| 94 | 93 | oveq1d |  |-  ( ph -> ( ( * ` ( A + ( T x. ( B - A ) ) ) ) - ( * ` C ) ) = ( ( ( X x. Q ) + ( ( * ` A ) - ( A x. Q ) ) ) - ( * ` C ) ) ) | 
						
							| 95 | 55 25 27 | addsubassd |  |-  ( ph -> ( ( ( X x. Q ) + ( ( * ` A ) - ( A x. Q ) ) ) - ( * ` C ) ) = ( ( X x. Q ) + ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) | 
						
							| 96 | 75 94 95 | 3eqtrd |  |-  ( ph -> ( * ` ( ( A + ( T x. ( B - A ) ) ) - C ) ) = ( ( X x. Q ) + ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) | 
						
							| 97 | 74 96 | eqtrd |  |-  ( ph -> ( * ` ( X - C ) ) = ( ( X x. Q ) + ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) | 
						
							| 98 | 97 | oveq2d |  |-  ( ph -> ( ( X - C ) x. ( * ` ( X - C ) ) ) = ( ( X - C ) x. ( ( X x. Q ) + ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) ) | 
						
							| 99 | 69 70 | cjsubd |  |-  ( ph -> ( * ` ( E - F ) ) = ( ( * ` E ) - ( * ` F ) ) ) | 
						
							| 100 | 99 | oveq2d |  |-  ( ph -> ( ( E - F ) x. ( * ` ( E - F ) ) ) = ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) | 
						
							| 101 | 73 98 100 | 3eqtr3d |  |-  ( ph -> ( ( X - C ) x. ( ( X x. Q ) + ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) = ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) | 
						
							| 102 | 26 41 23 | mul12d |  |-  ( ph -> ( C x. ( X x. Q ) ) = ( X x. ( C x. Q ) ) ) | 
						
							| 103 | 102 | oveq1d |  |-  ( ph -> ( ( C x. ( X x. Q ) ) + ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) = ( ( X x. ( C x. Q ) ) + ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) ) | 
						
							| 104 | 63 50 103 | comraddd |  |-  ( ph -> ( ( C x. ( X x. Q ) ) + ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) = ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( X x. ( C x. Q ) ) ) ) | 
						
							| 105 | 104 | oveq2d |  |-  ( ph -> ( ( ( X x. ( X x. Q ) ) + ( X x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) - ( ( C x. ( X x. Q ) ) + ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) ) = ( ( ( X x. ( X x. Q ) ) + ( X x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) - ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( X x. ( C x. Q ) ) ) ) ) | 
						
							| 106 | 65 101 105 | 3eqtr3rd |  |-  ( ph -> ( ( ( X x. ( X x. Q ) ) + ( X x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) - ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( X x. ( C x. Q ) ) ) ) = ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) | 
						
							| 107 | 61 64 106 | 3eqtr2d |  |-  ( ph -> ( ( ( ( X ^ 2 ) x. Q ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) = ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) | 
						
							| 108 | 58 107 | eqtrd |  |-  ( ph -> ( ( ( ( X ^ 2 ) x. Q ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) = ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) | 
						
							| 109 | 57 49 | addcld |  |-  ( ph -> ( ( ( X ^ 2 ) x. Q ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) e. CC ) | 
						
							| 110 | 109 50 | subcld |  |-  ( ph -> ( ( ( ( X ^ 2 ) x. Q ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) e. CC ) | 
						
							| 111 | 108 110 | eqeltrrd |  |-  ( ph -> ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) e. CC ) | 
						
							| 112 | 50 111 | addcld |  |-  ( ph -> ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) e. CC ) | 
						
							| 113 | 112 | negcld |  |-  ( ph -> -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) e. CC ) | 
						
							| 114 | 49 113 23 36 | divdird |  |-  ( ph -> ( ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) / Q ) = ( ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) / Q ) + ( -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) / Q ) ) ) | 
						
							| 115 | 48 114 | eqtr4d |  |-  ( ph -> ( ( M x. X ) + N ) = ( ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) / Q ) ) | 
						
							| 116 | 115 | oveq2d |  |-  ( ph -> ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = ( ( X ^ 2 ) + ( ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) / Q ) ) ) | 
						
							| 117 | 41 | sqcld |  |-  ( ph -> ( X ^ 2 ) e. CC ) | 
						
							| 118 | 49 113 | addcld |  |-  ( ph -> ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) e. CC ) | 
						
							| 119 | 117 23 118 36 | muldivdid |  |-  ( ph -> ( ( ( ( X ^ 2 ) x. Q ) + ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) ) / Q ) = ( ( X ^ 2 ) + ( ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) / Q ) ) ) | 
						
							| 120 | 57 49 113 | addassd |  |-  ( ph -> ( ( ( ( X ^ 2 ) x. Q ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) = ( ( ( X ^ 2 ) x. Q ) + ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) ) ) | 
						
							| 121 | 109 112 | negsubd |  |-  ( ph -> ( ( ( ( X ^ 2 ) x. Q ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) = ( ( ( ( X ^ 2 ) x. Q ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) - ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) ) | 
						
							| 122 | 109 50 111 | subsub4d |  |-  ( ph -> ( ( ( ( ( X ^ 2 ) x. Q ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) - ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) = ( ( ( ( X ^ 2 ) x. Q ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) - ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) ) | 
						
							| 123 | 110 108 | subeq0bd |  |-  ( ph -> ( ( ( ( ( X ^ 2 ) x. Q ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) - ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) = 0 ) | 
						
							| 124 | 121 122 123 | 3eqtr2d |  |-  ( ph -> ( ( ( ( X ^ 2 ) x. Q ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) = 0 ) | 
						
							| 125 | 120 124 | eqtr3d |  |-  ( ph -> ( ( ( X ^ 2 ) x. Q ) + ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) ) = 0 ) | 
						
							| 126 | 57 118 | addcld |  |-  ( ph -> ( ( ( X ^ 2 ) x. Q ) + ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) ) e. CC ) | 
						
							| 127 | 126 23 36 | diveq0ad |  |-  ( ph -> ( ( ( ( ( X ^ 2 ) x. Q ) + ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) ) / Q ) = 0 <-> ( ( ( X ^ 2 ) x. Q ) + ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) ) = 0 ) ) | 
						
							| 128 | 125 127 | mpbird |  |-  ( ph -> ( ( ( ( X ^ 2 ) x. Q ) + ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) ) / Q ) = 0 ) | 
						
							| 129 | 116 119 128 | 3eqtr2d |  |-  ( ph -> ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = 0 ) | 
						
							| 130 | 129 36 | jca |  |-  ( ph -> ( ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = 0 /\ Q =/= 0 ) ) |