Metamath Proof Explorer


Theorem constrrtlc1

Description: In the construction of constructible numbers, line-circle intersections are roots of a quadratic equation, non-degenerate case. (Contributed by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Hypotheses constrrtlc.s
|- ( ph -> S C_ CC )
constrrtlc.a
|- ( ph -> A e. S )
constrrtlc.b
|- ( ph -> B e. S )
constrrtlc.c
|- ( ph -> C e. S )
constrrtlc.e
|- ( ph -> E e. S )
constrrtlc.f
|- ( ph -> F e. S )
constrrtlc.t
|- ( ph -> T e. RR )
constrrtlc.1
|- ( ph -> X = ( A + ( T x. ( B - A ) ) ) )
constrrtlc.2
|- ( ph -> ( abs ` ( X - C ) ) = ( abs ` ( E - F ) ) )
constrrtlc.q
|- Q = ( ( ( * ` B ) - ( * ` A ) ) / ( B - A ) )
constrrtlc.m
|- M = ( ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) / Q )
constrrtlc.n
|- N = ( -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) / Q )
constrrtlc1.1
|- ( ph -> A =/= B )
Assertion constrrtlc1
|- ( ph -> ( ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = 0 /\ Q =/= 0 ) )

Proof

Step Hyp Ref Expression
1 constrrtlc.s
 |-  ( ph -> S C_ CC )
2 constrrtlc.a
 |-  ( ph -> A e. S )
3 constrrtlc.b
 |-  ( ph -> B e. S )
4 constrrtlc.c
 |-  ( ph -> C e. S )
5 constrrtlc.e
 |-  ( ph -> E e. S )
6 constrrtlc.f
 |-  ( ph -> F e. S )
7 constrrtlc.t
 |-  ( ph -> T e. RR )
8 constrrtlc.1
 |-  ( ph -> X = ( A + ( T x. ( B - A ) ) ) )
9 constrrtlc.2
 |-  ( ph -> ( abs ` ( X - C ) ) = ( abs ` ( E - F ) ) )
10 constrrtlc.q
 |-  Q = ( ( ( * ` B ) - ( * ` A ) ) / ( B - A ) )
11 constrrtlc.m
 |-  M = ( ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) / Q )
12 constrrtlc.n
 |-  N = ( -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) / Q )
13 constrrtlc1.1
 |-  ( ph -> A =/= B )
14 1 2 sseldd
 |-  ( ph -> A e. CC )
15 14 cjcld
 |-  ( ph -> ( * ` A ) e. CC )
16 1 3 sseldd
 |-  ( ph -> B e. CC )
17 16 cjcld
 |-  ( ph -> ( * ` B ) e. CC )
18 17 15 subcld
 |-  ( ph -> ( ( * ` B ) - ( * ` A ) ) e. CC )
19 16 14 subcld
 |-  ( ph -> ( B - A ) e. CC )
20 13 necomd
 |-  ( ph -> B =/= A )
21 16 14 20 subne0d
 |-  ( ph -> ( B - A ) =/= 0 )
22 18 19 21 divcld
 |-  ( ph -> ( ( ( * ` B ) - ( * ` A ) ) / ( B - A ) ) e. CC )
23 10 22 eqeltrid
 |-  ( ph -> Q e. CC )
24 14 23 mulcld
 |-  ( ph -> ( A x. Q ) e. CC )
25 15 24 subcld
 |-  ( ph -> ( ( * ` A ) - ( A x. Q ) ) e. CC )
26 1 4 sseldd
 |-  ( ph -> C e. CC )
27 26 cjcld
 |-  ( ph -> ( * ` C ) e. CC )
28 25 27 subcld
 |-  ( ph -> ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) e. CC )
29 26 23 mulcld
 |-  ( ph -> ( C x. Q ) e. CC )
30 28 29 subcld
 |-  ( ph -> ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) e. CC )
31 16 14 cjsubd
 |-  ( ph -> ( * ` ( B - A ) ) = ( ( * ` B ) - ( * ` A ) ) )
32 19 21 cjne0d
 |-  ( ph -> ( * ` ( B - A ) ) =/= 0 )
33 31 32 eqnetrrd
 |-  ( ph -> ( ( * ` B ) - ( * ` A ) ) =/= 0 )
34 18 19 33 21 divne0d
 |-  ( ph -> ( ( ( * ` B ) - ( * ` A ) ) / ( B - A ) ) =/= 0 )
35 10 neeq1i
 |-  ( Q =/= 0 <-> ( ( ( * ` B ) - ( * ` A ) ) / ( B - A ) ) =/= 0 )
36 34 35 sylibr
 |-  ( ph -> Q =/= 0 )
37 30 23 36 divcld
 |-  ( ph -> ( ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) / Q ) e. CC )
38 7 recnd
 |-  ( ph -> T e. CC )
39 38 19 mulcld
 |-  ( ph -> ( T x. ( B - A ) ) e. CC )
40 14 39 addcld
 |-  ( ph -> ( A + ( T x. ( B - A ) ) ) e. CC )
41 8 40 eqeltrd
 |-  ( ph -> X e. CC )
42 37 41 mulcomd
 |-  ( ph -> ( ( ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) / Q ) x. X ) = ( X x. ( ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) / Q ) ) )
43 11 a1i
 |-  ( ph -> M = ( ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) / Q ) )
44 43 oveq1d
 |-  ( ph -> ( M x. X ) = ( ( ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) / Q ) x. X ) )
45 41 30 23 36 divassd
 |-  ( ph -> ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) / Q ) = ( X x. ( ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) / Q ) ) )
46 42 44 45 3eqtr4d
 |-  ( ph -> ( M x. X ) = ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) / Q ) )
47 12 a1i
 |-  ( ph -> N = ( -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) / Q ) )
48 46 47 oveq12d
 |-  ( ph -> ( ( M x. X ) + N ) = ( ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) / Q ) + ( -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) / Q ) ) )
49 41 30 mulcld
 |-  ( ph -> ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) e. CC )
50 26 28 mulcld
 |-  ( ph -> ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) e. CC )
51 41 sqvald
 |-  ( ph -> ( X ^ 2 ) = ( X x. X ) )
52 51 oveq1d
 |-  ( ph -> ( ( X ^ 2 ) x. Q ) = ( ( X x. X ) x. Q ) )
53 41 41 23 mulassd
 |-  ( ph -> ( ( X x. X ) x. Q ) = ( X x. ( X x. Q ) ) )
54 52 53 eqtrd
 |-  ( ph -> ( ( X ^ 2 ) x. Q ) = ( X x. ( X x. Q ) ) )
55 41 23 mulcld
 |-  ( ph -> ( X x. Q ) e. CC )
56 41 55 mulcld
 |-  ( ph -> ( X x. ( X x. Q ) ) e. CC )
57 54 56 eqeltrd
 |-  ( ph -> ( ( X ^ 2 ) x. Q ) e. CC )
58 57 49 50 addsubd
 |-  ( ph -> ( ( ( ( X ^ 2 ) x. Q ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) = ( ( ( ( X ^ 2 ) x. Q ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) )
59 54 oveq1d
 |-  ( ph -> ( ( ( X ^ 2 ) x. Q ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) = ( ( X x. ( X x. Q ) ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) )
60 41 28 29 subdid
 |-  ( ph -> ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) = ( ( X x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) - ( X x. ( C x. Q ) ) ) )
61 59 60 oveq12d
 |-  ( ph -> ( ( ( ( X ^ 2 ) x. Q ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) = ( ( ( X x. ( X x. Q ) ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) + ( ( X x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) - ( X x. ( C x. Q ) ) ) ) )
62 41 28 mulcld
 |-  ( ph -> ( X x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) e. CC )
63 41 29 mulcld
 |-  ( ph -> ( X x. ( C x. Q ) ) e. CC )
64 56 62 50 63 addsub4d
 |-  ( ph -> ( ( ( X x. ( X x. Q ) ) + ( X x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) - ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( X x. ( C x. Q ) ) ) ) = ( ( ( X x. ( X x. Q ) ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) + ( ( X x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) - ( X x. ( C x. Q ) ) ) ) )
65 41 26 55 28 submuladdd
 |-  ( ph -> ( ( X - C ) x. ( ( X x. Q ) + ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) = ( ( ( X x. ( X x. Q ) ) + ( X x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) - ( ( C x. ( X x. Q ) ) + ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) ) )
66 9 oveq1d
 |-  ( ph -> ( ( abs ` ( X - C ) ) ^ 2 ) = ( ( abs ` ( E - F ) ) ^ 2 ) )
67 41 26 subcld
 |-  ( ph -> ( X - C ) e. CC )
68 67 absvalsqd
 |-  ( ph -> ( ( abs ` ( X - C ) ) ^ 2 ) = ( ( X - C ) x. ( * ` ( X - C ) ) ) )
69 1 5 sseldd
 |-  ( ph -> E e. CC )
70 1 6 sseldd
 |-  ( ph -> F e. CC )
71 69 70 subcld
 |-  ( ph -> ( E - F ) e. CC )
72 71 absvalsqd
 |-  ( ph -> ( ( abs ` ( E - F ) ) ^ 2 ) = ( ( E - F ) x. ( * ` ( E - F ) ) ) )
73 66 68 72 3eqtr3d
 |-  ( ph -> ( ( X - C ) x. ( * ` ( X - C ) ) ) = ( ( E - F ) x. ( * ` ( E - F ) ) ) )
74 8 fvoveq1d
 |-  ( ph -> ( * ` ( X - C ) ) = ( * ` ( ( A + ( T x. ( B - A ) ) ) - C ) ) )
75 40 26 cjsubd
 |-  ( ph -> ( * ` ( ( A + ( T x. ( B - A ) ) ) - C ) ) = ( ( * ` ( A + ( T x. ( B - A ) ) ) ) - ( * ` C ) ) )
76 14 39 cjaddd
 |-  ( ph -> ( * ` ( A + ( T x. ( B - A ) ) ) ) = ( ( * ` A ) + ( * ` ( T x. ( B - A ) ) ) ) )
77 38 19 cjmuld
 |-  ( ph -> ( * ` ( T x. ( B - A ) ) ) = ( ( * ` T ) x. ( * ` ( B - A ) ) ) )
78 7 cjred
 |-  ( ph -> ( * ` T ) = T )
79 14 39 8 mvrladdd
 |-  ( ph -> ( X - A ) = ( T x. ( B - A ) ) )
80 79 39 eqeltrd
 |-  ( ph -> ( X - A ) e. CC )
81 80 38 19 21 divmul3d
 |-  ( ph -> ( ( ( X - A ) / ( B - A ) ) = T <-> ( X - A ) = ( T x. ( B - A ) ) ) )
82 79 81 mpbird
 |-  ( ph -> ( ( X - A ) / ( B - A ) ) = T )
83 78 82 eqtr4d
 |-  ( ph -> ( * ` T ) = ( ( X - A ) / ( B - A ) ) )
84 83 31 oveq12d
 |-  ( ph -> ( ( * ` T ) x. ( * ` ( B - A ) ) ) = ( ( ( X - A ) / ( B - A ) ) x. ( ( * ` B ) - ( * ` A ) ) ) )
85 80 19 18 21 div32d
 |-  ( ph -> ( ( ( X - A ) / ( B - A ) ) x. ( ( * ` B ) - ( * ` A ) ) ) = ( ( X - A ) x. ( ( ( * ` B ) - ( * ` A ) ) / ( B - A ) ) ) )
86 10 oveq2i
 |-  ( ( X - A ) x. Q ) = ( ( X - A ) x. ( ( ( * ` B ) - ( * ` A ) ) / ( B - A ) ) )
87 85 86 eqtr4di
 |-  ( ph -> ( ( ( X - A ) / ( B - A ) ) x. ( ( * ` B ) - ( * ` A ) ) ) = ( ( X - A ) x. Q ) )
88 41 14 23 subdird
 |-  ( ph -> ( ( X - A ) x. Q ) = ( ( X x. Q ) - ( A x. Q ) ) )
89 84 87 88 3eqtrd
 |-  ( ph -> ( ( * ` T ) x. ( * ` ( B - A ) ) ) = ( ( X x. Q ) - ( A x. Q ) ) )
90 77 89 eqtrd
 |-  ( ph -> ( * ` ( T x. ( B - A ) ) ) = ( ( X x. Q ) - ( A x. Q ) ) )
91 90 oveq2d
 |-  ( ph -> ( ( * ` A ) + ( * ` ( T x. ( B - A ) ) ) ) = ( ( * ` A ) + ( ( X x. Q ) - ( A x. Q ) ) ) )
92 15 55 24 addsub12d
 |-  ( ph -> ( ( * ` A ) + ( ( X x. Q ) - ( A x. Q ) ) ) = ( ( X x. Q ) + ( ( * ` A ) - ( A x. Q ) ) ) )
93 76 91 92 3eqtrd
 |-  ( ph -> ( * ` ( A + ( T x. ( B - A ) ) ) ) = ( ( X x. Q ) + ( ( * ` A ) - ( A x. Q ) ) ) )
94 93 oveq1d
 |-  ( ph -> ( ( * ` ( A + ( T x. ( B - A ) ) ) ) - ( * ` C ) ) = ( ( ( X x. Q ) + ( ( * ` A ) - ( A x. Q ) ) ) - ( * ` C ) ) )
95 55 25 27 addsubassd
 |-  ( ph -> ( ( ( X x. Q ) + ( ( * ` A ) - ( A x. Q ) ) ) - ( * ` C ) ) = ( ( X x. Q ) + ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) )
96 75 94 95 3eqtrd
 |-  ( ph -> ( * ` ( ( A + ( T x. ( B - A ) ) ) - C ) ) = ( ( X x. Q ) + ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) )
97 74 96 eqtrd
 |-  ( ph -> ( * ` ( X - C ) ) = ( ( X x. Q ) + ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) )
98 97 oveq2d
 |-  ( ph -> ( ( X - C ) x. ( * ` ( X - C ) ) ) = ( ( X - C ) x. ( ( X x. Q ) + ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) )
99 69 70 cjsubd
 |-  ( ph -> ( * ` ( E - F ) ) = ( ( * ` E ) - ( * ` F ) ) )
100 99 oveq2d
 |-  ( ph -> ( ( E - F ) x. ( * ` ( E - F ) ) ) = ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) )
101 73 98 100 3eqtr3d
 |-  ( ph -> ( ( X - C ) x. ( ( X x. Q ) + ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) = ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) )
102 26 41 23 mul12d
 |-  ( ph -> ( C x. ( X x. Q ) ) = ( X x. ( C x. Q ) ) )
103 102 oveq1d
 |-  ( ph -> ( ( C x. ( X x. Q ) ) + ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) = ( ( X x. ( C x. Q ) ) + ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) )
104 63 50 103 comraddd
 |-  ( ph -> ( ( C x. ( X x. Q ) ) + ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) = ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( X x. ( C x. Q ) ) ) )
105 104 oveq2d
 |-  ( ph -> ( ( ( X x. ( X x. Q ) ) + ( X x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) - ( ( C x. ( X x. Q ) ) + ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) ) = ( ( ( X x. ( X x. Q ) ) + ( X x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) - ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( X x. ( C x. Q ) ) ) ) )
106 65 101 105 3eqtr3rd
 |-  ( ph -> ( ( ( X x. ( X x. Q ) ) + ( X x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) - ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( X x. ( C x. Q ) ) ) ) = ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) )
107 61 64 106 3eqtr2d
 |-  ( ph -> ( ( ( ( X ^ 2 ) x. Q ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) = ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) )
108 58 107 eqtrd
 |-  ( ph -> ( ( ( ( X ^ 2 ) x. Q ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) = ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) )
109 57 49 addcld
 |-  ( ph -> ( ( ( X ^ 2 ) x. Q ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) e. CC )
110 109 50 subcld
 |-  ( ph -> ( ( ( ( X ^ 2 ) x. Q ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) e. CC )
111 108 110 eqeltrrd
 |-  ( ph -> ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) e. CC )
112 50 111 addcld
 |-  ( ph -> ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) e. CC )
113 112 negcld
 |-  ( ph -> -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) e. CC )
114 49 113 23 36 divdird
 |-  ( ph -> ( ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) / Q ) = ( ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) / Q ) + ( -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) / Q ) ) )
115 48 114 eqtr4d
 |-  ( ph -> ( ( M x. X ) + N ) = ( ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) / Q ) )
116 115 oveq2d
 |-  ( ph -> ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = ( ( X ^ 2 ) + ( ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) / Q ) ) )
117 41 sqcld
 |-  ( ph -> ( X ^ 2 ) e. CC )
118 49 113 addcld
 |-  ( ph -> ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) e. CC )
119 117 23 118 36 muldivdid
 |-  ( ph -> ( ( ( ( X ^ 2 ) x. Q ) + ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) ) / Q ) = ( ( X ^ 2 ) + ( ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) / Q ) ) )
120 57 49 113 addassd
 |-  ( ph -> ( ( ( ( X ^ 2 ) x. Q ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) = ( ( ( X ^ 2 ) x. Q ) + ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) ) )
121 109 112 negsubd
 |-  ( ph -> ( ( ( ( X ^ 2 ) x. Q ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) = ( ( ( ( X ^ 2 ) x. Q ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) - ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) )
122 109 50 111 subsub4d
 |-  ( ph -> ( ( ( ( ( X ^ 2 ) x. Q ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) - ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) = ( ( ( ( X ^ 2 ) x. Q ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) - ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) )
123 110 108 subeq0bd
 |-  ( ph -> ( ( ( ( ( X ^ 2 ) x. Q ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) - ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) ) - ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) = 0 )
124 121 122 123 3eqtr2d
 |-  ( ph -> ( ( ( ( X ^ 2 ) x. Q ) + ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) = 0 )
125 120 124 eqtr3d
 |-  ( ph -> ( ( ( X ^ 2 ) x. Q ) + ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) ) = 0 )
126 57 118 addcld
 |-  ( ph -> ( ( ( X ^ 2 ) x. Q ) + ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) ) e. CC )
127 126 23 36 diveq0ad
 |-  ( ph -> ( ( ( ( ( X ^ 2 ) x. Q ) + ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) ) / Q ) = 0 <-> ( ( ( X ^ 2 ) x. Q ) + ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) ) = 0 ) )
128 125 127 mpbird
 |-  ( ph -> ( ( ( ( X ^ 2 ) x. Q ) + ( ( X x. ( ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) - ( C x. Q ) ) ) + -u ( ( C x. ( ( ( * ` A ) - ( A x. Q ) ) - ( * ` C ) ) ) + ( ( E - F ) x. ( ( * ` E ) - ( * ` F ) ) ) ) ) ) / Q ) = 0 )
129 116 119 128 3eqtr2d
 |-  ( ph -> ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = 0 )
130 129 36 jca
 |-  ( ph -> ( ( ( X ^ 2 ) + ( ( M x. X ) + N ) ) = 0 /\ Q =/= 0 ) )