Metamath Proof Explorer


Theorem submuladdd

Description: The product of a difference and a sum. Cf. addmulsub . (Contributed by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Hypotheses submuladdd.1
|- ( ph -> A e. CC )
submuladdd.2
|- ( ph -> B e. CC )
submuladdd.3
|- ( ph -> C e. CC )
submuladdd.4
|- ( ph -> D e. CC )
Assertion submuladdd
|- ( ph -> ( ( A - B ) x. ( C + D ) ) = ( ( ( A x. C ) + ( A x. D ) ) - ( ( B x. C ) + ( B x. D ) ) ) )

Proof

Step Hyp Ref Expression
1 submuladdd.1
 |-  ( ph -> A e. CC )
2 submuladdd.2
 |-  ( ph -> B e. CC )
3 submuladdd.3
 |-  ( ph -> C e. CC )
4 submuladdd.4
 |-  ( ph -> D e. CC )
5 1 2 subcld
 |-  ( ph -> ( A - B ) e. CC )
6 3 4 addcld
 |-  ( ph -> ( C + D ) e. CC )
7 5 6 mulcomd
 |-  ( ph -> ( ( A - B ) x. ( C + D ) ) = ( ( C + D ) x. ( A - B ) ) )
8 addmulsub
 |-  ( ( ( C e. CC /\ D e. CC ) /\ ( A e. CC /\ B e. CC ) ) -> ( ( C + D ) x. ( A - B ) ) = ( ( ( C x. A ) + ( D x. A ) ) - ( ( C x. B ) + ( D x. B ) ) ) )
9 3 4 1 2 8 syl22anc
 |-  ( ph -> ( ( C + D ) x. ( A - B ) ) = ( ( ( C x. A ) + ( D x. A ) ) - ( ( C x. B ) + ( D x. B ) ) ) )
10 3 1 mulcomd
 |-  ( ph -> ( C x. A ) = ( A x. C ) )
11 4 1 mulcomd
 |-  ( ph -> ( D x. A ) = ( A x. D ) )
12 10 11 oveq12d
 |-  ( ph -> ( ( C x. A ) + ( D x. A ) ) = ( ( A x. C ) + ( A x. D ) ) )
13 3 2 mulcomd
 |-  ( ph -> ( C x. B ) = ( B x. C ) )
14 4 2 mulcomd
 |-  ( ph -> ( D x. B ) = ( B x. D ) )
15 13 14 oveq12d
 |-  ( ph -> ( ( C x. B ) + ( D x. B ) ) = ( ( B x. C ) + ( B x. D ) ) )
16 12 15 oveq12d
 |-  ( ph -> ( ( ( C x. A ) + ( D x. A ) ) - ( ( C x. B ) + ( D x. B ) ) ) = ( ( ( A x. C ) + ( A x. D ) ) - ( ( B x. C ) + ( B x. D ) ) ) )
17 7 9 16 3eqtrd
 |-  ( ph -> ( ( A - B ) x. ( C + D ) ) = ( ( ( A x. C ) + ( A x. D ) ) - ( ( B x. C ) + ( B x. D ) ) ) )