Metamath Proof Explorer


Theorem submuladdd

Description: The product of a difference and a sum. Cf. addmulsub . (Contributed by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Hypotheses submuladdd.1 φ A
submuladdd.2 φ B
submuladdd.3 φ C
submuladdd.4 φ D
Assertion submuladdd φ A B C + D = A C + A D - B C + B D

Proof

Step Hyp Ref Expression
1 submuladdd.1 φ A
2 submuladdd.2 φ B
3 submuladdd.3 φ C
4 submuladdd.4 φ D
5 1 2 subcld φ A B
6 3 4 addcld φ C + D
7 5 6 mulcomd φ A B C + D = C + D A B
8 addmulsub C D A B C + D A B = C A + D A - C B + D B
9 3 4 1 2 8 syl22anc φ C + D A B = C A + D A - C B + D B
10 3 1 mulcomd φ C A = A C
11 4 1 mulcomd φ D A = A D
12 10 11 oveq12d φ C A + D A = A C + A D
13 3 2 mulcomd φ C B = B C
14 4 2 mulcomd φ D B = B D
15 13 14 oveq12d φ C B + D B = B C + B D
16 12 15 oveq12d φ C A + D A - C B + D B = A C + A D - B C + B D
17 7 9 16 3eqtrd φ A B C + D = A C + A D - B C + B D