Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Multiplication
addmulsub
Next ⟩
subaddmulsub
Metamath Proof Explorer
Ascii
Unicode
Theorem
addmulsub
Description:
The product of a sum and a difference.
(Contributed by
AV
, 5-Mar-2023)
Ref
Expression
Assertion
addmulsub
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
+
B
⁢
C
−
D
=
A
⁢
C
+
B
⁢
C
-
A
⁢
D
+
B
⁢
D
Proof
Step
Hyp
Ref
Expression
1
simpll
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
∈
ℂ
2
simplr
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
B
∈
ℂ
3
1
2
addcld
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
+
B
∈
ℂ
4
simprl
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
C
∈
ℂ
5
simprr
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
D
∈
ℂ
6
3
4
5
subdid
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
+
B
⁢
C
−
D
=
A
+
B
⁢
C
−
A
+
B
⁢
D
7
1
2
4
adddird
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
+
B
⁢
C
=
A
⁢
C
+
B
⁢
C
8
1
2
5
adddird
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
+
B
⁢
D
=
A
⁢
D
+
B
⁢
D
9
7
8
oveq12d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
+
B
⁢
C
−
A
+
B
⁢
D
=
A
⁢
C
+
B
⁢
C
-
A
⁢
D
+
B
⁢
D
10
6
9
eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
+
B
⁢
C
−
D
=
A
⁢
C
+
B
⁢
C
-
A
⁢
D
+
B
⁢
D