Metamath Proof Explorer


Theorem addmulsub

Description: The product of a sum and a difference. (Contributed by AV, 5-Mar-2023)

Ref Expression
Assertion addmulsub A B C D A + B C D = A C + B C - A D + B D

Proof

Step Hyp Ref Expression
1 simpll A B C D A
2 simplr A B C D B
3 1 2 addcld A B C D A + B
4 simprl A B C D C
5 simprr A B C D D
6 3 4 5 subdid A B C D A + B C D = A + B C A + B D
7 1 2 4 adddird A B C D A + B C = A C + B C
8 1 2 5 adddird A B C D A + B D = A D + B D
9 7 8 oveq12d A B C D A + B C A + B D = A C + B C - A D + B D
10 6 9 eqtrd A B C D A + B C D = A C + B C - A D + B D