Metamath Proof Explorer


Theorem addmulsub

Description: The product of a sum and a difference. (Contributed by AV, 5-Mar-2023)

Ref Expression
Assertion addmulsub ABCDA+BCD=AC+BC-AD+BD

Proof

Step Hyp Ref Expression
1 simpll ABCDA
2 simplr ABCDB
3 1 2 addcld ABCDA+B
4 simprl ABCDC
5 simprr ABCDD
6 3 4 5 subdid ABCDA+BCD=A+BCA+BD
7 1 2 4 adddird ABCDA+BC=AC+BC
8 1 2 5 adddird ABCDA+BD=AD+BD
9 7 8 oveq12d ABCDA+BCA+BD=AC+BC-AD+BD
10 6 9 eqtrd ABCDA+BCD=AC+BC-AD+BD