Metamath Proof Explorer


Theorem muldivdid

Description: Distribution of division over addition with a multiplication. (Contributed by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Hypotheses muldivdid.1 φ A
muldivdid.2 φ B
muldivdid.3 φ C
muldivdid.4 φ B 0
Assertion muldivdid φ A B + C B = A + C B

Proof

Step Hyp Ref Expression
1 muldivdid.1 φ A
2 muldivdid.2 φ B
3 muldivdid.3 φ C
4 muldivdid.4 φ B 0
5 1 2 mulcomd φ A B = B A
6 5 oveq1d φ A B + C = B A + C
7 6 oveq1d φ A B + C B = B A + C B
8 muldivdir A C B B 0 B A + C B = A + C B
9 1 3 2 4 8 syl112anc φ B A + C B = A + C B
10 7 9 eqtrd φ A B + C B = A + C B