Metamath Proof Explorer


Theorem binom2subadd

Description: The difference of the squares of the sum and difference of two complex numbers A and B . (Contributed by Thierry Arnoux, 5-Nov-2025)

Ref Expression
Hypotheses binom2subadd.1 φ A
binom2subadd.2 φ B
Assertion binom2subadd φ A + B 2 A B 2 = 4 A B

Proof

Step Hyp Ref Expression
1 binom2subadd.1 φ A
2 binom2subadd.2 φ B
3 1 2 addcld φ A + B
4 1 2 subcld φ A B
5 subsq A + B A B A + B 2 A B 2 = A + B + A B A + B - A B
6 3 4 5 syl2anc φ A + B 2 A B 2 = A + B + A B A + B - A B
7 1 2 1 ppncand φ A + B + A B = A + A
8 1 2timesd φ 2 A = A + A
9 7 8 eqtr4d φ A + B + A B = 2 A
10 1 2 2 pnncand φ A + B - A B = B + B
11 2 2timesd φ 2 B = B + B
12 10 11 eqtr4d φ A + B - A B = 2 B
13 9 12 oveq12d φ A + B + A B A + B - A B = 2 A 2 B
14 2cnd φ 2
15 14 1 14 2 mul4d φ 2 A 2 B = 2 2 A B
16 6 13 15 3eqtrd φ A + B 2 A B 2 = 2 2 A B
17 2t2e4 2 2 = 4
18 17 oveq1i 2 2 A B = 4 A B
19 16 18 eqtrdi φ A + B 2 A B 2 = 4 A B