| Step |
Hyp |
Ref |
Expression |
| 1 |
|
binom2subadd.1 |
|- ( ph -> A e. CC ) |
| 2 |
|
binom2subadd.2 |
|- ( ph -> B e. CC ) |
| 3 |
1 2
|
addcld |
|- ( ph -> ( A + B ) e. CC ) |
| 4 |
1 2
|
subcld |
|- ( ph -> ( A - B ) e. CC ) |
| 5 |
|
subsq |
|- ( ( ( A + B ) e. CC /\ ( A - B ) e. CC ) -> ( ( ( A + B ) ^ 2 ) - ( ( A - B ) ^ 2 ) ) = ( ( ( A + B ) + ( A - B ) ) x. ( ( A + B ) - ( A - B ) ) ) ) |
| 6 |
3 4 5
|
syl2anc |
|- ( ph -> ( ( ( A + B ) ^ 2 ) - ( ( A - B ) ^ 2 ) ) = ( ( ( A + B ) + ( A - B ) ) x. ( ( A + B ) - ( A - B ) ) ) ) |
| 7 |
1 2 1
|
ppncand |
|- ( ph -> ( ( A + B ) + ( A - B ) ) = ( A + A ) ) |
| 8 |
1
|
2timesd |
|- ( ph -> ( 2 x. A ) = ( A + A ) ) |
| 9 |
7 8
|
eqtr4d |
|- ( ph -> ( ( A + B ) + ( A - B ) ) = ( 2 x. A ) ) |
| 10 |
1 2 2
|
pnncand |
|- ( ph -> ( ( A + B ) - ( A - B ) ) = ( B + B ) ) |
| 11 |
2
|
2timesd |
|- ( ph -> ( 2 x. B ) = ( B + B ) ) |
| 12 |
10 11
|
eqtr4d |
|- ( ph -> ( ( A + B ) - ( A - B ) ) = ( 2 x. B ) ) |
| 13 |
9 12
|
oveq12d |
|- ( ph -> ( ( ( A + B ) + ( A - B ) ) x. ( ( A + B ) - ( A - B ) ) ) = ( ( 2 x. A ) x. ( 2 x. B ) ) ) |
| 14 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 15 |
14 1 14 2
|
mul4d |
|- ( ph -> ( ( 2 x. A ) x. ( 2 x. B ) ) = ( ( 2 x. 2 ) x. ( A x. B ) ) ) |
| 16 |
6 13 15
|
3eqtrd |
|- ( ph -> ( ( ( A + B ) ^ 2 ) - ( ( A - B ) ^ 2 ) ) = ( ( 2 x. 2 ) x. ( A x. B ) ) ) |
| 17 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
| 18 |
17
|
oveq1i |
|- ( ( 2 x. 2 ) x. ( A x. B ) ) = ( 4 x. ( A x. B ) ) |
| 19 |
16 18
|
eqtrdi |
|- ( ph -> ( ( ( A + B ) ^ 2 ) - ( ( A - B ) ^ 2 ) ) = ( 4 x. ( A x. B ) ) ) |