Metamath Proof Explorer


Theorem muldivdid

Description: Distribution of division over addition with a multiplication. (Contributed by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Hypotheses muldivdid.1
|- ( ph -> A e. CC )
muldivdid.2
|- ( ph -> B e. CC )
muldivdid.3
|- ( ph -> C e. CC )
muldivdid.4
|- ( ph -> B =/= 0 )
Assertion muldivdid
|- ( ph -> ( ( ( A x. B ) + C ) / B ) = ( A + ( C / B ) ) )

Proof

Step Hyp Ref Expression
1 muldivdid.1
 |-  ( ph -> A e. CC )
2 muldivdid.2
 |-  ( ph -> B e. CC )
3 muldivdid.3
 |-  ( ph -> C e. CC )
4 muldivdid.4
 |-  ( ph -> B =/= 0 )
5 1 2 mulcomd
 |-  ( ph -> ( A x. B ) = ( B x. A ) )
6 5 oveq1d
 |-  ( ph -> ( ( A x. B ) + C ) = ( ( B x. A ) + C ) )
7 6 oveq1d
 |-  ( ph -> ( ( ( A x. B ) + C ) / B ) = ( ( ( B x. A ) + C ) / B ) )
8 muldivdir
 |-  ( ( A e. CC /\ C e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( ( B x. A ) + C ) / B ) = ( A + ( C / B ) ) )
9 1 3 2 4 8 syl112anc
 |-  ( ph -> ( ( ( B x. A ) + C ) / B ) = ( A + ( C / B ) ) )
10 7 9 eqtrd
 |-  ( ph -> ( ( ( A x. B ) + C ) / B ) = ( A + ( C / B ) ) )