| Step |
Hyp |
Ref |
Expression |
| 1 |
|
muldivdid.1 |
|- ( ph -> A e. CC ) |
| 2 |
|
muldivdid.2 |
|- ( ph -> B e. CC ) |
| 3 |
|
muldivdid.3 |
|- ( ph -> C e. CC ) |
| 4 |
|
muldivdid.4 |
|- ( ph -> B =/= 0 ) |
| 5 |
1 2
|
mulcomd |
|- ( ph -> ( A x. B ) = ( B x. A ) ) |
| 6 |
5
|
oveq1d |
|- ( ph -> ( ( A x. B ) + C ) = ( ( B x. A ) + C ) ) |
| 7 |
6
|
oveq1d |
|- ( ph -> ( ( ( A x. B ) + C ) / B ) = ( ( ( B x. A ) + C ) / B ) ) |
| 8 |
|
muldivdir |
|- ( ( A e. CC /\ C e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( ( B x. A ) + C ) / B ) = ( A + ( C / B ) ) ) |
| 9 |
1 3 2 4 8
|
syl112anc |
|- ( ph -> ( ( ( B x. A ) + C ) / B ) = ( A + ( C / B ) ) ) |
| 10 |
7 9
|
eqtrd |
|- ( ph -> ( ( ( A x. B ) + C ) / B ) = ( A + ( C / B ) ) ) |