Step |
Hyp |
Ref |
Expression |
1 |
|
muldivdid.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
muldivdid.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
muldivdid.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
4 |
|
muldivdid.4 |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
5 |
1 2
|
mulcomd |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
6 |
5
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) + 𝐶 ) = ( ( 𝐵 · 𝐴 ) + 𝐶 ) ) |
7 |
6
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐵 ) + 𝐶 ) / 𝐵 ) = ( ( ( 𝐵 · 𝐴 ) + 𝐶 ) / 𝐵 ) ) |
8 |
|
muldivdir |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( ( 𝐵 · 𝐴 ) + 𝐶 ) / 𝐵 ) = ( 𝐴 + ( 𝐶 / 𝐵 ) ) ) |
9 |
1 3 2 4 8
|
syl112anc |
⊢ ( 𝜑 → ( ( ( 𝐵 · 𝐴 ) + 𝐶 ) / 𝐵 ) = ( 𝐴 + ( 𝐶 / 𝐵 ) ) ) |
10 |
7 9
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐵 ) + 𝐶 ) / 𝐵 ) = ( 𝐴 + ( 𝐶 / 𝐵 ) ) ) |