Metamath Proof Explorer


Theorem muldivdid

Description: Distribution of division over addition with a multiplication. (Contributed by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Hypotheses muldivdid.1 ( 𝜑𝐴 ∈ ℂ )
muldivdid.2 ( 𝜑𝐵 ∈ ℂ )
muldivdid.3 ( 𝜑𝐶 ∈ ℂ )
muldivdid.4 ( 𝜑𝐵 ≠ 0 )
Assertion muldivdid ( 𝜑 → ( ( ( 𝐴 · 𝐵 ) + 𝐶 ) / 𝐵 ) = ( 𝐴 + ( 𝐶 / 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 muldivdid.1 ( 𝜑𝐴 ∈ ℂ )
2 muldivdid.2 ( 𝜑𝐵 ∈ ℂ )
3 muldivdid.3 ( 𝜑𝐶 ∈ ℂ )
4 muldivdid.4 ( 𝜑𝐵 ≠ 0 )
5 1 2 mulcomd ( 𝜑 → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) )
6 5 oveq1d ( 𝜑 → ( ( 𝐴 · 𝐵 ) + 𝐶 ) = ( ( 𝐵 · 𝐴 ) + 𝐶 ) )
7 6 oveq1d ( 𝜑 → ( ( ( 𝐴 · 𝐵 ) + 𝐶 ) / 𝐵 ) = ( ( ( 𝐵 · 𝐴 ) + 𝐶 ) / 𝐵 ) )
8 muldivdir ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( ( 𝐵 · 𝐴 ) + 𝐶 ) / 𝐵 ) = ( 𝐴 + ( 𝐶 / 𝐵 ) ) )
9 1 3 2 4 8 syl112anc ( 𝜑 → ( ( ( 𝐵 · 𝐴 ) + 𝐶 ) / 𝐵 ) = ( 𝐴 + ( 𝐶 / 𝐵 ) ) )
10 7 9 eqtrd ( 𝜑 → ( ( ( 𝐴 · 𝐵 ) + 𝐶 ) / 𝐵 ) = ( 𝐴 + ( 𝐶 / 𝐵 ) ) )