Step |
Hyp |
Ref |
Expression |
1 |
|
constrrtlc.s |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
2 |
|
constrrtlc.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
3 |
|
constrrtlc.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |
4 |
|
constrrtlc.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) |
5 |
|
constrrtlc.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑆 ) |
6 |
|
constrrtlc.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
7 |
|
constrrtlc.t |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
8 |
|
constrrtlc.1 |
⊢ ( 𝜑 → 𝑋 = ( 𝐴 + ( 𝑇 · ( 𝐵 − 𝐴 ) ) ) ) |
9 |
|
constrrtlc.2 |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 𝐶 ) ) = ( abs ‘ ( 𝐸 − 𝐹 ) ) ) |
10 |
|
constrrtlc.q |
⊢ 𝑄 = ( ( ( ∗ ‘ 𝐵 ) − ( ∗ ‘ 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) |
11 |
|
constrrtlc.m |
⊢ 𝑀 = ( ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) / 𝑄 ) |
12 |
|
constrrtlc.n |
⊢ 𝑁 = ( - ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) / 𝑄 ) |
13 |
|
constrrtlc1.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
14 |
1 2
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
15 |
14
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
16 |
1 3
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
17 |
16
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ 𝐵 ) ∈ ℂ ) |
18 |
17 15
|
subcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐵 ) − ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) |
19 |
16 14
|
subcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
20 |
13
|
necomd |
⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
21 |
16 14 20
|
subne0d |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≠ 0 ) |
22 |
18 19 21
|
divcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐵 ) − ( ∗ ‘ 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) ∈ ℂ ) |
23 |
10 22
|
eqeltrid |
⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
24 |
14 23
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝑄 ) ∈ ℂ ) |
25 |
15 24
|
subcld |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) ∈ ℂ ) |
26 |
1 4
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
27 |
26
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ 𝐶 ) ∈ ℂ ) |
28 |
25 27
|
subcld |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ∈ ℂ ) |
29 |
26 23
|
mulcld |
⊢ ( 𝜑 → ( 𝐶 · 𝑄 ) ∈ ℂ ) |
30 |
28 29
|
subcld |
⊢ ( 𝜑 → ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ∈ ℂ ) |
31 |
16 14
|
cjsubd |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐵 − 𝐴 ) ) = ( ( ∗ ‘ 𝐵 ) − ( ∗ ‘ 𝐴 ) ) ) |
32 |
19 21
|
cjne0d |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐵 − 𝐴 ) ) ≠ 0 ) |
33 |
31 32
|
eqnetrrd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐵 ) − ( ∗ ‘ 𝐴 ) ) ≠ 0 ) |
34 |
18 19 33 21
|
divne0d |
⊢ ( 𝜑 → ( ( ( ∗ ‘ 𝐵 ) − ( ∗ ‘ 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) ≠ 0 ) |
35 |
10
|
neeq1i |
⊢ ( 𝑄 ≠ 0 ↔ ( ( ( ∗ ‘ 𝐵 ) − ( ∗ ‘ 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) ≠ 0 ) |
36 |
34 35
|
sylibr |
⊢ ( 𝜑 → 𝑄 ≠ 0 ) |
37 |
30 23 36
|
divcld |
⊢ ( 𝜑 → ( ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) / 𝑄 ) ∈ ℂ ) |
38 |
7
|
recnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
39 |
38 19
|
mulcld |
⊢ ( 𝜑 → ( 𝑇 · ( 𝐵 − 𝐴 ) ) ∈ ℂ ) |
40 |
14 39
|
addcld |
⊢ ( 𝜑 → ( 𝐴 + ( 𝑇 · ( 𝐵 − 𝐴 ) ) ) ∈ ℂ ) |
41 |
8 40
|
eqeltrd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
42 |
37 41
|
mulcomd |
⊢ ( 𝜑 → ( ( ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) / 𝑄 ) · 𝑋 ) = ( 𝑋 · ( ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) / 𝑄 ) ) ) |
43 |
11
|
a1i |
⊢ ( 𝜑 → 𝑀 = ( ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) / 𝑄 ) ) |
44 |
43
|
oveq1d |
⊢ ( 𝜑 → ( 𝑀 · 𝑋 ) = ( ( ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) / 𝑄 ) · 𝑋 ) ) |
45 |
41 30 23 36
|
divassd |
⊢ ( 𝜑 → ( ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) / 𝑄 ) = ( 𝑋 · ( ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) / 𝑄 ) ) ) |
46 |
42 44 45
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑀 · 𝑋 ) = ( ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) / 𝑄 ) ) |
47 |
12
|
a1i |
⊢ ( 𝜑 → 𝑁 = ( - ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) / 𝑄 ) ) |
48 |
46 47
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑋 ) + 𝑁 ) = ( ( ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) / 𝑄 ) + ( - ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) / 𝑄 ) ) ) |
49 |
41 30
|
mulcld |
⊢ ( 𝜑 → ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) ∈ ℂ ) |
50 |
26 28
|
mulcld |
⊢ ( 𝜑 → ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ∈ ℂ ) |
51 |
41
|
sqvald |
⊢ ( 𝜑 → ( 𝑋 ↑ 2 ) = ( 𝑋 · 𝑋 ) ) |
52 |
51
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 2 ) · 𝑄 ) = ( ( 𝑋 · 𝑋 ) · 𝑄 ) ) |
53 |
41 41 23
|
mulassd |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑋 ) · 𝑄 ) = ( 𝑋 · ( 𝑋 · 𝑄 ) ) ) |
54 |
52 53
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 2 ) · 𝑄 ) = ( 𝑋 · ( 𝑋 · 𝑄 ) ) ) |
55 |
41 23
|
mulcld |
⊢ ( 𝜑 → ( 𝑋 · 𝑄 ) ∈ ℂ ) |
56 |
41 55
|
mulcld |
⊢ ( 𝜑 → ( 𝑋 · ( 𝑋 · 𝑄 ) ) ∈ ℂ ) |
57 |
54 56
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 2 ) · 𝑄 ) ∈ ℂ ) |
58 |
57 49 50
|
addsubd |
⊢ ( 𝜑 → ( ( ( ( 𝑋 ↑ 2 ) · 𝑄 ) + ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) ) − ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) = ( ( ( ( 𝑋 ↑ 2 ) · 𝑄 ) − ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) + ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) ) ) |
59 |
54
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 2 ) · 𝑄 ) − ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) = ( ( 𝑋 · ( 𝑋 · 𝑄 ) ) − ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) ) |
60 |
41 28 29
|
subdid |
⊢ ( 𝜑 → ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) = ( ( 𝑋 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) − ( 𝑋 · ( 𝐶 · 𝑄 ) ) ) ) |
61 |
59 60
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( 𝑋 ↑ 2 ) · 𝑄 ) − ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) + ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) ) = ( ( ( 𝑋 · ( 𝑋 · 𝑄 ) ) − ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) + ( ( 𝑋 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) − ( 𝑋 · ( 𝐶 · 𝑄 ) ) ) ) ) |
62 |
41 28
|
mulcld |
⊢ ( 𝜑 → ( 𝑋 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ∈ ℂ ) |
63 |
41 29
|
mulcld |
⊢ ( 𝜑 → ( 𝑋 · ( 𝐶 · 𝑄 ) ) ∈ ℂ ) |
64 |
56 62 50 63
|
addsub4d |
⊢ ( 𝜑 → ( ( ( 𝑋 · ( 𝑋 · 𝑄 ) ) + ( 𝑋 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) − ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( 𝑋 · ( 𝐶 · 𝑄 ) ) ) ) = ( ( ( 𝑋 · ( 𝑋 · 𝑄 ) ) − ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) + ( ( 𝑋 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) − ( 𝑋 · ( 𝐶 · 𝑄 ) ) ) ) ) |
65 |
41 26 55 28
|
submuladdd |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐶 ) · ( ( 𝑋 · 𝑄 ) + ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) = ( ( ( 𝑋 · ( 𝑋 · 𝑄 ) ) + ( 𝑋 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) − ( ( 𝐶 · ( 𝑋 · 𝑄 ) ) + ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) ) ) |
66 |
9
|
oveq1d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 − 𝐶 ) ) ↑ 2 ) = ( ( abs ‘ ( 𝐸 − 𝐹 ) ) ↑ 2 ) ) |
67 |
41 26
|
subcld |
⊢ ( 𝜑 → ( 𝑋 − 𝐶 ) ∈ ℂ ) |
68 |
67
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 − 𝐶 ) ) ↑ 2 ) = ( ( 𝑋 − 𝐶 ) · ( ∗ ‘ ( 𝑋 − 𝐶 ) ) ) ) |
69 |
1 5
|
sseldd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
70 |
1 6
|
sseldd |
⊢ ( 𝜑 → 𝐹 ∈ ℂ ) |
71 |
69 70
|
subcld |
⊢ ( 𝜑 → ( 𝐸 − 𝐹 ) ∈ ℂ ) |
72 |
71
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐸 − 𝐹 ) ) ↑ 2 ) = ( ( 𝐸 − 𝐹 ) · ( ∗ ‘ ( 𝐸 − 𝐹 ) ) ) ) |
73 |
66 68 72
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐶 ) · ( ∗ ‘ ( 𝑋 − 𝐶 ) ) ) = ( ( 𝐸 − 𝐹 ) · ( ∗ ‘ ( 𝐸 − 𝐹 ) ) ) ) |
74 |
8
|
fvoveq1d |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 − 𝐶 ) ) = ( ∗ ‘ ( ( 𝐴 + ( 𝑇 · ( 𝐵 − 𝐴 ) ) ) − 𝐶 ) ) ) |
75 |
40 26
|
cjsubd |
⊢ ( 𝜑 → ( ∗ ‘ ( ( 𝐴 + ( 𝑇 · ( 𝐵 − 𝐴 ) ) ) − 𝐶 ) ) = ( ( ∗ ‘ ( 𝐴 + ( 𝑇 · ( 𝐵 − 𝐴 ) ) ) ) − ( ∗ ‘ 𝐶 ) ) ) |
76 |
14 39
|
cjaddd |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐴 + ( 𝑇 · ( 𝐵 − 𝐴 ) ) ) ) = ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ ( 𝑇 · ( 𝐵 − 𝐴 ) ) ) ) ) |
77 |
38 19
|
cjmuld |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑇 · ( 𝐵 − 𝐴 ) ) ) = ( ( ∗ ‘ 𝑇 ) · ( ∗ ‘ ( 𝐵 − 𝐴 ) ) ) ) |
78 |
7
|
cjred |
⊢ ( 𝜑 → ( ∗ ‘ 𝑇 ) = 𝑇 ) |
79 |
14 39 8
|
mvrladdd |
⊢ ( 𝜑 → ( 𝑋 − 𝐴 ) = ( 𝑇 · ( 𝐵 − 𝐴 ) ) ) |
80 |
79 39
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑋 − 𝐴 ) ∈ ℂ ) |
81 |
80 38 19 21
|
divmul3d |
⊢ ( 𝜑 → ( ( ( 𝑋 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) = 𝑇 ↔ ( 𝑋 − 𝐴 ) = ( 𝑇 · ( 𝐵 − 𝐴 ) ) ) ) |
82 |
79 81
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) = 𝑇 ) |
83 |
78 82
|
eqtr4d |
⊢ ( 𝜑 → ( ∗ ‘ 𝑇 ) = ( ( 𝑋 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) |
84 |
83 31
|
oveq12d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑇 ) · ( ∗ ‘ ( 𝐵 − 𝐴 ) ) ) = ( ( ( 𝑋 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( ( ∗ ‘ 𝐵 ) − ( ∗ ‘ 𝐴 ) ) ) ) |
85 |
80 19 18 21
|
div32d |
⊢ ( 𝜑 → ( ( ( 𝑋 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( ( ∗ ‘ 𝐵 ) − ( ∗ ‘ 𝐴 ) ) ) = ( ( 𝑋 − 𝐴 ) · ( ( ( ∗ ‘ 𝐵 ) − ( ∗ ‘ 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) ) ) |
86 |
10
|
oveq2i |
⊢ ( ( 𝑋 − 𝐴 ) · 𝑄 ) = ( ( 𝑋 − 𝐴 ) · ( ( ( ∗ ‘ 𝐵 ) − ( ∗ ‘ 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) ) |
87 |
85 86
|
eqtr4di |
⊢ ( 𝜑 → ( ( ( 𝑋 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( ( ∗ ‘ 𝐵 ) − ( ∗ ‘ 𝐴 ) ) ) = ( ( 𝑋 − 𝐴 ) · 𝑄 ) ) |
88 |
41 14 23
|
subdird |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐴 ) · 𝑄 ) = ( ( 𝑋 · 𝑄 ) − ( 𝐴 · 𝑄 ) ) ) |
89 |
84 87 88
|
3eqtrd |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑇 ) · ( ∗ ‘ ( 𝐵 − 𝐴 ) ) ) = ( ( 𝑋 · 𝑄 ) − ( 𝐴 · 𝑄 ) ) ) |
90 |
77 89
|
eqtrd |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑇 · ( 𝐵 − 𝐴 ) ) ) = ( ( 𝑋 · 𝑄 ) − ( 𝐴 · 𝑄 ) ) ) |
91 |
90
|
oveq2d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ ( 𝑇 · ( 𝐵 − 𝐴 ) ) ) ) = ( ( ∗ ‘ 𝐴 ) + ( ( 𝑋 · 𝑄 ) − ( 𝐴 · 𝑄 ) ) ) ) |
92 |
15 55 24
|
addsub12d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝐴 ) + ( ( 𝑋 · 𝑄 ) − ( 𝐴 · 𝑄 ) ) ) = ( ( 𝑋 · 𝑄 ) + ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) ) ) |
93 |
76 91 92
|
3eqtrd |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐴 + ( 𝑇 · ( 𝐵 − 𝐴 ) ) ) ) = ( ( 𝑋 · 𝑄 ) + ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) ) ) |
94 |
93
|
oveq1d |
⊢ ( 𝜑 → ( ( ∗ ‘ ( 𝐴 + ( 𝑇 · ( 𝐵 − 𝐴 ) ) ) ) − ( ∗ ‘ 𝐶 ) ) = ( ( ( 𝑋 · 𝑄 ) + ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) ) − ( ∗ ‘ 𝐶 ) ) ) |
95 |
55 25 27
|
addsubassd |
⊢ ( 𝜑 → ( ( ( 𝑋 · 𝑄 ) + ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) ) − ( ∗ ‘ 𝐶 ) ) = ( ( 𝑋 · 𝑄 ) + ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) |
96 |
75 94 95
|
3eqtrd |
⊢ ( 𝜑 → ( ∗ ‘ ( ( 𝐴 + ( 𝑇 · ( 𝐵 − 𝐴 ) ) ) − 𝐶 ) ) = ( ( 𝑋 · 𝑄 ) + ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) |
97 |
74 96
|
eqtrd |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 − 𝐶 ) ) = ( ( 𝑋 · 𝑄 ) + ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) |
98 |
97
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐶 ) · ( ∗ ‘ ( 𝑋 − 𝐶 ) ) ) = ( ( 𝑋 − 𝐶 ) · ( ( 𝑋 · 𝑄 ) + ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) ) |
99 |
69 70
|
cjsubd |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝐸 − 𝐹 ) ) = ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) |
100 |
99
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐸 − 𝐹 ) · ( ∗ ‘ ( 𝐸 − 𝐹 ) ) ) = ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) |
101 |
73 98 100
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐶 ) · ( ( 𝑋 · 𝑄 ) + ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) = ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) |
102 |
26 41 23
|
mul12d |
⊢ ( 𝜑 → ( 𝐶 · ( 𝑋 · 𝑄 ) ) = ( 𝑋 · ( 𝐶 · 𝑄 ) ) ) |
103 |
102
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐶 · ( 𝑋 · 𝑄 ) ) + ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) = ( ( 𝑋 · ( 𝐶 · 𝑄 ) ) + ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) ) |
104 |
63 50 103
|
comraddd |
⊢ ( 𝜑 → ( ( 𝐶 · ( 𝑋 · 𝑄 ) ) + ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) = ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( 𝑋 · ( 𝐶 · 𝑄 ) ) ) ) |
105 |
104
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑋 · ( 𝑋 · 𝑄 ) ) + ( 𝑋 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) − ( ( 𝐶 · ( 𝑋 · 𝑄 ) ) + ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) ) = ( ( ( 𝑋 · ( 𝑋 · 𝑄 ) ) + ( 𝑋 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) − ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( 𝑋 · ( 𝐶 · 𝑄 ) ) ) ) ) |
106 |
65 101 105
|
3eqtr3rd |
⊢ ( 𝜑 → ( ( ( 𝑋 · ( 𝑋 · 𝑄 ) ) + ( 𝑋 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) − ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( 𝑋 · ( 𝐶 · 𝑄 ) ) ) ) = ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) |
107 |
61 64 106
|
3eqtr2d |
⊢ ( 𝜑 → ( ( ( ( 𝑋 ↑ 2 ) · 𝑄 ) − ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) + ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) ) = ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) |
108 |
58 107
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( 𝑋 ↑ 2 ) · 𝑄 ) + ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) ) − ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) = ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) |
109 |
57 49
|
addcld |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 2 ) · 𝑄 ) + ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) ) ∈ ℂ ) |
110 |
109 50
|
subcld |
⊢ ( 𝜑 → ( ( ( ( 𝑋 ↑ 2 ) · 𝑄 ) + ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) ) − ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) ∈ ℂ ) |
111 |
108 110
|
eqeltrrd |
⊢ ( 𝜑 → ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ∈ ℂ ) |
112 |
50 111
|
addcld |
⊢ ( 𝜑 → ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) ∈ ℂ ) |
113 |
112
|
negcld |
⊢ ( 𝜑 → - ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) ∈ ℂ ) |
114 |
49 113 23 36
|
divdird |
⊢ ( 𝜑 → ( ( ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) + - ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) ) / 𝑄 ) = ( ( ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) / 𝑄 ) + ( - ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) / 𝑄 ) ) ) |
115 |
48 114
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑋 ) + 𝑁 ) = ( ( ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) + - ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) ) / 𝑄 ) ) |
116 |
115
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 2 ) + ( ( 𝑀 · 𝑋 ) + 𝑁 ) ) = ( ( 𝑋 ↑ 2 ) + ( ( ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) + - ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) ) / 𝑄 ) ) ) |
117 |
41
|
sqcld |
⊢ ( 𝜑 → ( 𝑋 ↑ 2 ) ∈ ℂ ) |
118 |
49 113
|
addcld |
⊢ ( 𝜑 → ( ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) + - ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) ) ∈ ℂ ) |
119 |
117 23 118 36
|
muldivdid |
⊢ ( 𝜑 → ( ( ( ( 𝑋 ↑ 2 ) · 𝑄 ) + ( ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) + - ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) ) ) / 𝑄 ) = ( ( 𝑋 ↑ 2 ) + ( ( ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) + - ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) ) / 𝑄 ) ) ) |
120 |
57 49 113
|
addassd |
⊢ ( 𝜑 → ( ( ( ( 𝑋 ↑ 2 ) · 𝑄 ) + ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) ) + - ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) ) = ( ( ( 𝑋 ↑ 2 ) · 𝑄 ) + ( ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) + - ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) ) ) ) |
121 |
109 112
|
negsubd |
⊢ ( 𝜑 → ( ( ( ( 𝑋 ↑ 2 ) · 𝑄 ) + ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) ) + - ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) ) = ( ( ( ( 𝑋 ↑ 2 ) · 𝑄 ) + ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) ) − ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) ) ) |
122 |
109 50 111
|
subsub4d |
⊢ ( 𝜑 → ( ( ( ( ( 𝑋 ↑ 2 ) · 𝑄 ) + ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) ) − ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) − ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) = ( ( ( ( 𝑋 ↑ 2 ) · 𝑄 ) + ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) ) − ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) ) ) |
123 |
110 108
|
subeq0bd |
⊢ ( 𝜑 → ( ( ( ( ( 𝑋 ↑ 2 ) · 𝑄 ) + ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) ) − ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) ) − ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) = 0 ) |
124 |
121 122 123
|
3eqtr2d |
⊢ ( 𝜑 → ( ( ( ( 𝑋 ↑ 2 ) · 𝑄 ) + ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) ) + - ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) ) = 0 ) |
125 |
120 124
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 2 ) · 𝑄 ) + ( ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) + - ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) ) ) = 0 ) |
126 |
57 118
|
addcld |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 2 ) · 𝑄 ) + ( ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) + - ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) ) ) ∈ ℂ ) |
127 |
126 23 36
|
diveq0ad |
⊢ ( 𝜑 → ( ( ( ( ( 𝑋 ↑ 2 ) · 𝑄 ) + ( ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) + - ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) ) ) / 𝑄 ) = 0 ↔ ( ( ( 𝑋 ↑ 2 ) · 𝑄 ) + ( ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) + - ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) ) ) = 0 ) ) |
128 |
125 127
|
mpbird |
⊢ ( 𝜑 → ( ( ( ( 𝑋 ↑ 2 ) · 𝑄 ) + ( ( 𝑋 · ( ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) − ( 𝐶 · 𝑄 ) ) ) + - ( ( 𝐶 · ( ( ( ∗ ‘ 𝐴 ) − ( 𝐴 · 𝑄 ) ) − ( ∗ ‘ 𝐶 ) ) ) + ( ( 𝐸 − 𝐹 ) · ( ( ∗ ‘ 𝐸 ) − ( ∗ ‘ 𝐹 ) ) ) ) ) ) / 𝑄 ) = 0 ) |
129 |
116 119 128
|
3eqtr2d |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 2 ) + ( ( 𝑀 · 𝑋 ) + 𝑁 ) ) = 0 ) |
130 |
129 36
|
jca |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 2 ) + ( ( 𝑀 · 𝑋 ) + 𝑁 ) ) = 0 ∧ 𝑄 ≠ 0 ) ) |