Metamath Proof Explorer


Theorem constrextdg2

Description: Any step ( CN ) of the construction of constructible numbers is contained in the last field of a tower of quadratic field extensions starting with QQ . (Contributed by Thierry Arnoux, 19-Oct-2025)

Ref Expression
Hypotheses constr0.1 C = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
constrextdg2.1 E = fld 𝑠 e
constrextdg2.2 F = fld 𝑠 f
constrextdg2.l < ˙ = f e | E /FldExt F E .:. F = 2
constrextdg2.n φ N ω
Assertion constrextdg2 φ v Chain SubDRing fld < ˙ v 0 = C N lastS v

Proof

Step Hyp Ref Expression
1 constr0.1 C = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
2 constrextdg2.1 E = fld 𝑠 e
3 constrextdg2.2 F = fld 𝑠 f
4 constrextdg2.l < ˙ = f e | E /FldExt F E .:. F = 2
5 constrextdg2.n φ N ω
6 fveq2 m = C m = C
7 6 sseq1d m = C m lastS v C lastS v
8 7 anbi2d m = v 0 = C m lastS v v 0 = C lastS v
9 8 rexbidv m = v Chain SubDRing fld < ˙ v 0 = C m lastS v v Chain SubDRing fld < ˙ v 0 = C lastS v
10 fveq2 m = n C m = C n
11 10 sseq1d m = n C m lastS v C n lastS v
12 11 anbi2d m = n v 0 = C m lastS v v 0 = C n lastS v
13 12 rexbidv m = n v Chain SubDRing fld < ˙ v 0 = C m lastS v v Chain SubDRing fld < ˙ v 0 = C n lastS v
14 fveq1 v = u v 0 = u 0
15 14 eqeq1d v = u v 0 = u 0 =
16 fveq2 v = u lastS v = lastS u
17 16 sseq2d v = u C n lastS v C n lastS u
18 15 17 anbi12d v = u v 0 = C n lastS v u 0 = C n lastS u
19 18 cbvrexvw v Chain SubDRing fld < ˙ v 0 = C n lastS v u Chain SubDRing fld < ˙ u 0 = C n lastS u
20 13 19 bitrdi m = n v Chain SubDRing fld < ˙ v 0 = C m lastS v u Chain SubDRing fld < ˙ u 0 = C n lastS u
21 fveq2 m = suc n C m = C suc n
22 21 sseq1d m = suc n C m lastS v C suc n lastS v
23 22 anbi2d m = suc n v 0 = C m lastS v v 0 = C suc n lastS v
24 23 rexbidv m = suc n v Chain SubDRing fld < ˙ v 0 = C m lastS v v Chain SubDRing fld < ˙ v 0 = C suc n lastS v
25 fveq2 m = N C m = C N
26 25 sseq1d m = N C m lastS v C N lastS v
27 26 anbi2d m = N v 0 = C m lastS v v 0 = C N lastS v
28 27 rexbidv m = N v Chain SubDRing fld < ˙ v 0 = C m lastS v v Chain SubDRing fld < ˙ v 0 = C N lastS v
29 fveq1 v = ⟨“ ”⟩ v 0 = ⟨“ ”⟩ 0
30 29 eqeq1d v = ⟨“ ”⟩ v 0 = ⟨“ ”⟩ 0 =
31 fveq2 v = ⟨“ ”⟩ lastS v = lastS ⟨“ ”⟩
32 31 sseq2d v = ⟨“ ”⟩ C lastS v C lastS ⟨“ ”⟩
33 30 32 anbi12d v = ⟨“ ”⟩ v 0 = C lastS v ⟨“ ”⟩ 0 = C lastS ⟨“ ”⟩
34 cndrng fld DivRing
35 qsubdrg SubRing fld fld 𝑠 DivRing
36 35 simpli SubRing fld
37 35 simpri fld 𝑠 DivRing
38 issdrg SubDRing fld fld DivRing SubRing fld fld 𝑠 DivRing
39 34 36 37 38 mpbir3an SubDRing fld
40 39 a1i SubDRing fld
41 40 s1chn ⟨“ ”⟩ Chain SubDRing fld < ˙
42 s1fv SubDRing fld ⟨“ ”⟩ 0 =
43 40 42 syl ⟨“ ”⟩ 0 =
44 0z 0
45 1z 1
46 prssi 0 1 0 1
47 44 45 46 mp2an 0 1
48 zssq
49 47 48 sstri 0 1
50 1 constr0 C = 0 1
51 lsws1 SubDRing fld lastS ⟨“ ”⟩ =
52 39 51 ax-mp lastS ⟨“ ”⟩ =
53 49 50 52 3sstr4i C lastS ⟨“ ”⟩
54 43 53 jctir ⟨“ ”⟩ 0 = C lastS ⟨“ ”⟩
55 33 41 54 rspcedvdw v Chain SubDRing fld < ˙ v 0 = C lastS v
56 55 mptru v Chain SubDRing fld < ˙ v 0 = C lastS v
57 simplll n ω u Chain SubDRing fld < ˙ u 0 = C n lastS u n ω
58 simpllr n ω u Chain SubDRing fld < ˙ u 0 = C n lastS u u Chain SubDRing fld < ˙
59 simplr n ω u Chain SubDRing fld < ˙ u 0 = C n lastS u u 0 =
60 simpr n ω u Chain SubDRing fld < ˙ u 0 = C n lastS u C n lastS u
61 1 2 3 4 57 58 59 60 constrextdg2lem n ω u Chain SubDRing fld < ˙ u 0 = C n lastS u v Chain SubDRing fld < ˙ v 0 = C suc n lastS v
62 61 anasss n ω u Chain SubDRing fld < ˙ u 0 = C n lastS u v Chain SubDRing fld < ˙ v 0 = C suc n lastS v
63 62 rexlimdva2 n ω u Chain SubDRing fld < ˙ u 0 = C n lastS u v Chain SubDRing fld < ˙ v 0 = C suc n lastS v
64 9 20 24 28 56 63 finds N ω v Chain SubDRing fld < ˙ v 0 = C N lastS v
65 5 64 syl φ v Chain SubDRing fld < ˙ v 0 = C N lastS v