Metamath Proof Explorer


Theorem elsuci

Description: Membership in a successor. This one-way implication does not require that either A or B be sets. Lemma 1.13 of Schloeder p. 2. (Contributed by NM, 6-Jun-1994)

Ref Expression
Assertion elsuci AsucBABA=B

Proof

Step Hyp Ref Expression
1 df-suc sucB=BB
2 1 eleq2i AsucBABB
3 elun ABBABAB
4 2 3 bitri AsucBABAB
5 elsni ABA=B
6 5 orim2i ABABABA=B
7 4 6 sylbi AsucBABA=B