Description: Constructible numbers are closed under line-line intersections. (Contributed by Thierry Arnoux, 2-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | constrllcl.a | |- ( ph -> A e. Constr ) |
|
| constrllcl.b | |- ( ph -> B e. Constr ) |
||
| constrllcl.c | |- ( ph -> G e. Constr ) |
||
| constrllcl.e | |- ( ph -> D e. Constr ) |
||
| constrllcl.t | |- ( ph -> T e. RR ) |
||
| constrllcl.r | |- ( ph -> R e. RR ) |
||
| constrllcl.x | |- ( ph -> X e. CC ) |
||
| constrllcl.1 | |- ( ph -> X = ( A + ( T x. ( B - A ) ) ) ) |
||
| constrllcl.2 | |- ( ph -> X = ( G + ( R x. ( D - G ) ) ) ) |
||
| constrllcl.3 | |- ( ph -> ( Im ` ( ( * ` ( B - A ) ) x. ( D - G ) ) ) =/= 0 ) |
||
| Assertion | constrllcl | |- ( ph -> X e. Constr ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constrllcl.a | |- ( ph -> A e. Constr ) |
|
| 2 | constrllcl.b | |- ( ph -> B e. Constr ) |
|
| 3 | constrllcl.c | |- ( ph -> G e. Constr ) |
|
| 4 | constrllcl.e | |- ( ph -> D e. Constr ) |
|
| 5 | constrllcl.t | |- ( ph -> T e. RR ) |
|
| 6 | constrllcl.r | |- ( ph -> R e. RR ) |
|
| 7 | constrllcl.x | |- ( ph -> X e. CC ) |
|
| 8 | constrllcl.1 | |- ( ph -> X = ( A + ( T x. ( B - A ) ) ) ) |
|
| 9 | constrllcl.2 | |- ( ph -> X = ( G + ( R x. ( D - G ) ) ) ) |
|
| 10 | constrllcl.3 | |- ( ph -> ( Im ` ( ( * ` ( B - A ) ) x. ( D - G ) ) ) =/= 0 ) |
|
| 11 | constrcbvlem | |- rec ( ( z e. _V |-> { y e. CC | ( E. i e. z E. j e. z E. k e. z E. l e. z E. o e. RR E. p e. RR ( y = ( i + ( o x. ( j - i ) ) ) /\ y = ( k + ( p x. ( l - k ) ) ) /\ ( Im ` ( ( * ` ( j - i ) ) x. ( l - k ) ) ) =/= 0 ) \/ E. i e. z E. j e. z E. k e. z E. m e. z E. q e. z E. o e. RR ( y = ( i + ( o x. ( j - i ) ) ) /\ ( abs ` ( y - k ) ) = ( abs ` ( m - q ) ) ) \/ E. i e. z E. j e. z E. k e. z E. l e. z E. m e. z E. q e. z ( i =/= l /\ ( abs ` ( y - i ) ) = ( abs ` ( j - k ) ) /\ ( abs ` ( y - l ) ) = ( abs ` ( m - q ) ) ) ) } ) , { 0 , 1 } ) = rec ( ( s e. _V |-> { x e. CC | ( E. a e. s E. b e. s E. c e. s E. d e. s E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. s E. b e. s E. c e. s E. e e. s E. f e. s E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. s E. b e. s E. c e. s E. d e. s E. e e. s E. f e. s ( a =/= d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) } ) , { 0 , 1 } ) |
|
| 12 | 11 1 2 3 4 5 6 7 8 9 10 | constrllcllem | |- ( ph -> X e. Constr ) |