Description: Constructible numbers are closed under circle-circle intersections. (Contributed by Thierry Arnoux, 2-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | constrcccl.a | ⊢ ( 𝜑 → 𝐴 ∈ Constr ) | |
| constrcccl.b | ⊢ ( 𝜑 → 𝐵 ∈ Constr ) | ||
| constrcccl.c | ⊢ ( 𝜑 → 𝐶 ∈ Constr ) | ||
| constrcccl.d | ⊢ ( 𝜑 → 𝐷 ∈ Constr ) | ||
| constrcccl.e | ⊢ ( 𝜑 → 𝐸 ∈ Constr ) | ||
| constrcccl.f | ⊢ ( 𝜑 → 𝐹 ∈ Constr ) | ||
| constrcccl.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | ||
| constrcccl.1 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐷 ) | ||
| constrcccl.2 | ⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐶 ) ) ) | ||
| constrcccl.3 | ⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 𝐷 ) ) = ( abs ‘ ( 𝐸 − 𝐹 ) ) ) | ||
| Assertion | constrcccl | ⊢ ( 𝜑 → 𝑋 ∈ Constr ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constrcccl.a | ⊢ ( 𝜑 → 𝐴 ∈ Constr ) | |
| 2 | constrcccl.b | ⊢ ( 𝜑 → 𝐵 ∈ Constr ) | |
| 3 | constrcccl.c | ⊢ ( 𝜑 → 𝐶 ∈ Constr ) | |
| 4 | constrcccl.d | ⊢ ( 𝜑 → 𝐷 ∈ Constr ) | |
| 5 | constrcccl.e | ⊢ ( 𝜑 → 𝐸 ∈ Constr ) | |
| 6 | constrcccl.f | ⊢ ( 𝜑 → 𝐹 ∈ Constr ) | |
| 7 | constrcccl.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | |
| 8 | constrcccl.1 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐷 ) | |
| 9 | constrcccl.2 | ⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐶 ) ) ) | |
| 10 | constrcccl.3 | ⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 𝐷 ) ) = ( abs ‘ ( 𝐸 − 𝐹 ) ) ) | |
| 11 | constrcbvlem | ⊢ rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙 − 𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗 − 𝑖 ) ) · ( 𝑙 − 𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑘 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ( 𝑖 ≠ 𝑙 ∧ ( abs ‘ ( 𝑦 − 𝑖 ) ) = ( abs ‘ ( 𝑗 − 𝑘 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑙 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ) } ) , { 0 , 1 } ) = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑥 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑥 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) } ) , { 0 , 1 } ) | |
| 12 | 11 1 2 3 4 5 6 7 8 9 10 | constrcccllem | ⊢ ( 𝜑 → 𝑋 ∈ Constr ) |