Metamath Proof Explorer


Theorem cosper

Description: The cosine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008) (Revised by Mario Carneiro, 10-May-2014)

Ref Expression
Assertion cosper AKcosA+K2π=cosA

Proof

Step Hyp Ref Expression
1 cosval AcosA=eiA+eiA2
2 cosval A+K2πcosA+K2π=eiA+K2π+eiA+K2π2
3 1 2 sinperlem AKcosA+K2π=cosA