Metamath Proof Explorer


Theorem cplgr0

Description: The null graph (with no vertices and no edges) represented by the empty set is a complete graph. (Contributed by AV, 1-Nov-2020)

Ref Expression
Assertion cplgr0 ComplGraph

Proof

Step Hyp Ref Expression
1 ral0 vvUnivVtx
2 vtxval0 Vtx=
3 2 raleqi vVtxvUnivVtxvvUnivVtx
4 1 3 mpbir vVtxvUnivVtx
5 0ex V
6 eqid Vtx=Vtx
7 6 iscplgr VComplGraphvVtxvUnivVtx
8 5 7 ax-mp ComplGraphvVtxvUnivVtx
9 4 8 mpbir ComplGraph