Metamath Proof Explorer


Theorem iscplgr

Description: The property of being a complete graph. (Contributed by AV, 1-Nov-2020)

Ref Expression
Hypothesis cplgruvtxb.v V=VtxG
Assertion iscplgr GWGComplGraphvVvUnivVtxG

Proof

Step Hyp Ref Expression
1 cplgruvtxb.v V=VtxG
2 1 cplgruvtxb GWGComplGraphUnivVtxG=V
3 eqss UnivVtxG=VUnivVtxGVVUnivVtxG
4 1 uvtxssvtx UnivVtxGV
5 dfss3 VUnivVtxGvVvUnivVtxG
6 5 anbi2i UnivVtxGVVUnivVtxGUnivVtxGVvVvUnivVtxG
7 4 6 mpbiran UnivVtxGVVUnivVtxGvVvUnivVtxG
8 3 7 bitri UnivVtxG=VvVvUnivVtxG
9 2 8 bitrdi GWGComplGraphvVvUnivVtxG