Metamath Proof Explorer


Theorem cplgruvtxb

Description: A graph G is complete iff each vertex is a universal vertex. (Contributed by Alexander van der Vekens, 14-Oct-2017) (Revised by AV, 15-Feb-2022)

Ref Expression
Hypothesis cplgruvtxb.v V=VtxG
Assertion cplgruvtxb GWGComplGraphUnivVtxG=V

Proof

Step Hyp Ref Expression
1 cplgruvtxb.v V=VtxG
2 fveq2 g=GUnivVtxg=UnivVtxG
3 fveq2 g=GVtxg=VtxG
4 3 1 eqtr4di g=GVtxg=V
5 2 4 eqeq12d g=GUnivVtxg=VtxgUnivVtxG=V
6 df-cplgr ComplGraph=g|UnivVtxg=Vtxg
7 5 6 elab2g GWGComplGraphUnivVtxG=V