Description: A graph G is complete iff each vertex is a universal vertex. (Contributed by Alexander van der Vekens, 14-Oct-2017) (Revised by AV, 15-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cplgruvtxb.v | |- V = ( Vtx ` G ) |
|
| Assertion | cplgruvtxb | |- ( G e. W -> ( G e. ComplGraph <-> ( UnivVtx ` G ) = V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cplgruvtxb.v | |- V = ( Vtx ` G ) |
|
| 2 | fveq2 | |- ( g = G -> ( UnivVtx ` g ) = ( UnivVtx ` G ) ) |
|
| 3 | fveq2 | |- ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) |
|
| 4 | 3 1 | eqtr4di | |- ( g = G -> ( Vtx ` g ) = V ) |
| 5 | 2 4 | eqeq12d | |- ( g = G -> ( ( UnivVtx ` g ) = ( Vtx ` g ) <-> ( UnivVtx ` G ) = V ) ) |
| 6 | df-cplgr | |- ComplGraph = { g | ( UnivVtx ` g ) = ( Vtx ` g ) } |
|
| 7 | 5 6 | elab2g | |- ( G e. W -> ( G e. ComplGraph <-> ( UnivVtx ` G ) = V ) ) |