Metamath Proof Explorer


Theorem cplgruvtxb

Description: A graph G is complete iff each vertex is a universal vertex. (Contributed by Alexander van der Vekens, 14-Oct-2017) (Revised by AV, 15-Feb-2022)

Ref Expression
Hypothesis cplgruvtxb.v
|- V = ( Vtx ` G )
Assertion cplgruvtxb
|- ( G e. W -> ( G e. ComplGraph <-> ( UnivVtx ` G ) = V ) )

Proof

Step Hyp Ref Expression
1 cplgruvtxb.v
 |-  V = ( Vtx ` G )
2 fveq2
 |-  ( g = G -> ( UnivVtx ` g ) = ( UnivVtx ` G ) )
3 fveq2
 |-  ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) )
4 3 1 eqtr4di
 |-  ( g = G -> ( Vtx ` g ) = V )
5 2 4 eqeq12d
 |-  ( g = G -> ( ( UnivVtx ` g ) = ( Vtx ` g ) <-> ( UnivVtx ` G ) = V ) )
6 df-cplgr
 |-  ComplGraph = { g | ( UnivVtx ` g ) = ( Vtx ` g ) }
7 5 6 elab2g
 |-  ( G e. W -> ( G e. ComplGraph <-> ( UnivVtx ` G ) = V ) )