Description: A graph G is complete iff each vertex is a universal vertex. (Contributed by Alexander van der Vekens, 14-Oct-2017) (Revised by AV, 15-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cplgruvtxb.v | |- V = ( Vtx ` G ) |
|
Assertion | cplgruvtxb | |- ( G e. W -> ( G e. ComplGraph <-> ( UnivVtx ` G ) = V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cplgruvtxb.v | |- V = ( Vtx ` G ) |
|
2 | fveq2 | |- ( g = G -> ( UnivVtx ` g ) = ( UnivVtx ` G ) ) |
|
3 | fveq2 | |- ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) |
|
4 | 3 1 | eqtr4di | |- ( g = G -> ( Vtx ` g ) = V ) |
5 | 2 4 | eqeq12d | |- ( g = G -> ( ( UnivVtx ` g ) = ( Vtx ` g ) <-> ( UnivVtx ` G ) = V ) ) |
6 | df-cplgr | |- ComplGraph = { g | ( UnivVtx ` g ) = ( Vtx ` g ) } |
|
7 | 5 6 | elab2g | |- ( G e. W -> ( G e. ComplGraph <-> ( UnivVtx ` G ) = V ) ) |