Metamath Proof Explorer


Theorem crngcomd

Description: Multiplication is commutative in a commutative ring. (Contributed by SN, 8-Mar-2025)

Ref Expression
Hypotheses crngcomd.b B=BaseR
crngcomd.t ·˙=R
crngcomd.r φRCRing
crngcomd.1 φXB
crngcomd.2 φYB
Assertion crngcomd φX·˙Y=Y·˙X

Proof

Step Hyp Ref Expression
1 crngcomd.b B=BaseR
2 crngcomd.t ·˙=R
3 crngcomd.r φRCRing
4 crngcomd.1 φXB
5 crngcomd.2 φYB
6 1 2 crngcom RCRingXBYBX·˙Y=Y·˙X
7 3 4 5 6 syl3anc φX·˙Y=Y·˙X