Metamath Proof Explorer


Theorem csb0

Description: The proper substitution of a class into the empty set is the empty set. (Contributed by NM, 18-Aug-2018)

Ref Expression
Assertion csb0 A/x=

Proof

Step Hyp Ref Expression
1 csbconstg AVA/x=
2 csbprc ¬AVA/x=
3 1 2 pm2.61i A/x=