Metamath Proof Explorer


Theorem csbeq1

Description: Analogue of dfsbcq for proper substitution into a class. (Contributed by NM, 10-Nov-2005)

Ref Expression
Assertion csbeq1 A=BA/xC=B/xC

Proof

Step Hyp Ref Expression
1 dfsbcq A=B[˙A/x]˙yC[˙B/x]˙yC
2 1 abbidv A=By|[˙A/x]˙yC=y|[˙B/x]˙yC
3 df-csb A/xC=y|[˙A/x]˙yC
4 df-csb B/xC=y|[˙B/x]˙yC
5 2 3 4 3eqtr4g A=BA/xC=B/xC