Metamath Proof Explorer


Theorem csbeq12dv

Description: Formula-building inference for class substitution. (Contributed by SN, 3-Nov-2023)

Ref Expression
Hypotheses csbeq12dv.1 φA=C
csbeq12dv.2 φB=D
Assertion csbeq12dv φA/xB=C/xD

Proof

Step Hyp Ref Expression
1 csbeq12dv.1 φA=C
2 csbeq12dv.2 φB=D
3 1 csbeq1d φA/xB=C/xB
4 2 csbeq2dv φC/xB=C/xD
5 3 4 eqtrd φA/xB=C/xD