Metamath Proof Explorer


Theorem csbeq2d

Description: Formula-building deduction for class substitution. (Contributed by NM, 22-Nov-2005) (Revised by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypotheses csbeq2d.1 xφ
csbeq2d.2 φB=C
Assertion csbeq2d φA/xB=A/xC

Proof

Step Hyp Ref Expression
1 csbeq2d.1 xφ
2 csbeq2d.2 φB=C
3 2 eleq2d φyByC
4 1 3 sbcbid φ[˙A/x]˙yB[˙A/x]˙yC
5 4 abbidv φy|[˙A/x]˙yB=y|[˙A/x]˙yC
6 df-csb A/xB=y|[˙A/x]˙yB
7 df-csb A/xC=y|[˙A/x]˙yC
8 5 6 7 3eqtr4g φA/xB=A/xC