Metamath Proof Explorer


Theorem csbnest1g

Description: Nest the composition of two substitutions. (Contributed by NM, 23-May-2006) (Proof shortened by Mario Carneiro, 11-Nov-2016)

Ref Expression
Assertion csbnest1g AVA/xB/xC=A/xB/xC

Proof

Step Hyp Ref Expression
1 nfcsb1v _xy/xC
2 1 ax-gen y_xy/xC
3 csbnestgfw AVy_xy/xCA/xB/yy/xC=A/xB/yy/xC
4 2 3 mpan2 AVA/xB/yy/xC=A/xB/yy/xC
5 csbcow B/yy/xC=B/xC
6 5 csbeq2i A/xB/yy/xC=A/xB/xC
7 csbcow A/xB/yy/xC=A/xB/xC
8 4 6 7 3eqtr3g AVA/xB/xC=A/xB/xC