Metamath Proof Explorer


Theorem csbprc

Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018) (Proof shortened by JJ, 27-Aug-2021)

Ref Expression
Assertion csbprc ¬AVA/xB=

Proof

Step Hyp Ref Expression
1 sbcex [˙A/x]˙yBAV
2 falim AV
3 1 2 pm5.21ni ¬AV[˙A/x]˙yB
4 3 abbidv ¬AVy|[˙A/x]˙yB=y|
5 df-csb A/xB=y|[˙A/x]˙yB
6 fal ¬
7 6 abf y|=
8 7 eqcomi =y|
9 4 5 8 3eqtr4g ¬AVA/xB=