Metamath Proof Explorer


Theorem csbprc

Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018) (Proof shortened by JJ, 27-Aug-2021)

Ref Expression
Assertion csbprc ¬ A V A / x B =

Proof

Step Hyp Ref Expression
1 sbcex [˙A / x]˙ y B A V
2 falim A V
3 1 2 pm5.21ni ¬ A V [˙A / x]˙ y B
4 3 abbidv ¬ A V y | [˙A / x]˙ y B = y |
5 df-csb A / x B = y | [˙A / x]˙ y B
6 fal ¬
7 6 abf y | =
8 7 eqcomi = y |
9 4 5 8 3eqtr4g ¬ A V A / x B =