Metamath Proof Explorer


Theorem csbprg

Description: Distribute proper substitution through a pair of classes. (Contributed by Alexander van der Vekens, 4-Sep-2018)

Ref Expression
Assertion csbprg CVC/xAB=C/xAC/xB

Proof

Step Hyp Ref Expression
1 csbun C/xAB=C/xAC/xB
2 csbsng CVC/xA=C/xA
3 csbsng CVC/xB=C/xB
4 2 3 uneq12d CVC/xAC/xB=C/xAC/xB
5 1 4 eqtrid CVC/xAB=C/xAC/xB
6 df-pr AB=AB
7 6 csbeq2i C/xAB=C/xAB
8 df-pr C/xAC/xB=C/xAC/xB
9 5 7 8 3eqtr4g CVC/xAB=C/xAC/xB