Metamath Proof Explorer


Theorem cvbtrcl

Description: Change of bound variable in class of all transitive relations which are supersets of a relation. (Contributed by RP, 5-May-2020)

Ref Expression
Assertion cvbtrcl x | R x x x x = y | R y y y y

Proof

Step Hyp Ref Expression
1 trcleq2lem x = y R x x x x R y y y y
2 1 cbvabv x | R x x x x = y | R y y y y