Metamath Proof Explorer


Theorem cvrlt

Description: The covers relation implies the less-than relation. ( cvpss analog.) (Contributed by NM, 8-Oct-2011)

Ref Expression
Hypotheses cvrfval.b B=BaseK
cvrfval.s <˙=<K
cvrfval.c C=K
Assertion cvrlt KAXBYBXCYX<˙Y

Proof

Step Hyp Ref Expression
1 cvrfval.b B=BaseK
2 cvrfval.s <˙=<K
3 cvrfval.c C=K
4 1 2 3 cvrval KAXBYBXCYX<˙Y¬zBX<˙zz<˙Y
5 4 simprbda KAXBYBXCYX<˙Y