Metamath Proof Explorer


Theorem cxpaddd

Description: Sum of exponents law for complex exponentiation. Proposition 10-4.2(a) of Gleason p. 135. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses cxp0d.1 φA
cxpefd.2 φA0
cxpefd.3 φB
cxpaddd.4 φC
Assertion cxpaddd φAB+C=ABAC

Proof

Step Hyp Ref Expression
1 cxp0d.1 φA
2 cxpefd.2 φA0
3 cxpefd.3 φB
4 cxpaddd.4 φC
5 cxpadd AA0BCAB+C=ABAC
6 1 2 3 4 5 syl211anc φAB+C=ABAC