Metamath Proof Explorer


Theorem dalem42

Description: Lemma for dath . Auxiliary atoms G H I form a plane. (Contributed by NM, 4-Aug-2012)

Ref Expression
Hypotheses dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalem.l ˙=K
dalem.j ˙=joinK
dalem.a A=AtomsK
dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
dalem38.m ˙=meetK
dalem38.o O=LPlanesK
dalem38.y Y=P˙Q˙R
dalem38.z Z=S˙T˙U
dalem38.g G=c˙P˙d˙S
dalem38.h H=c˙Q˙d˙T
dalem38.i I=c˙R˙d˙U
Assertion dalem42 φY=ZψG˙H˙IO

Proof

Step Hyp Ref Expression
1 dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalem.l ˙=K
3 dalem.j ˙=joinK
4 dalem.a A=AtomsK
5 dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
6 dalem38.m ˙=meetK
7 dalem38.o O=LPlanesK
8 dalem38.y Y=P˙Q˙R
9 dalem38.z Z=S˙T˙U
10 dalem38.g G=c˙P˙d˙S
11 dalem38.h H=c˙Q˙d˙T
12 dalem38.i I=c˙R˙d˙U
13 1 dalemkehl φKHL
14 13 3ad2ant1 φY=ZψKHL
15 1 2 3 4 5 6 7 8 9 10 dalem23 φY=ZψGA
16 1 2 3 4 5 6 7 8 9 11 dalem29 φY=ZψHA
17 1 2 3 4 5 6 7 8 9 12 dalem34 φY=ZψIA
18 1 2 3 4 5 6 7 8 9 10 11 12 dalem41 φY=ZψGH
19 1 2 3 4 5 6 7 8 9 10 11 12 dalem40 φY=Zψ¬I˙G˙H
20 2 3 4 7 lplni2 KHLGAHAIAGH¬I˙G˙HG˙H˙IO
21 14 15 16 17 18 19 20 syl132anc φY=ZψG˙H˙IO