Metamath Proof Explorer


Theorem dalem61

Description: Lemma for dath . Show that atoms D , E , and F lie on the same line (axis of perspectivity). Eliminate hypotheses containing dummy atoms c and d . (Contributed by NM, 11-Aug-2012)

Ref Expression
Hypotheses dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalem.l ˙=K
dalem.j ˙=joinK
dalem.a A=AtomsK
dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
dalem61.m ˙=meetK
dalem61.o O=LPlanesK
dalem61.y Y=P˙Q˙R
dalem61.z Z=S˙T˙U
dalem61.d D=P˙Q˙S˙T
dalem61.e E=Q˙R˙T˙U
dalem61.f F=R˙P˙U˙S
Assertion dalem61 φY=ZψF˙D˙E

Proof

Step Hyp Ref Expression
1 dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalem.l ˙=K
3 dalem.j ˙=joinK
4 dalem.a A=AtomsK
5 dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
6 dalem61.m ˙=meetK
7 dalem61.o O=LPlanesK
8 dalem61.y Y=P˙Q˙R
9 dalem61.z Z=S˙T˙U
10 dalem61.d D=P˙Q˙S˙T
11 dalem61.e E=Q˙R˙T˙U
12 dalem61.f F=R˙P˙U˙S
13 eqid c˙P˙d˙S=c˙P˙d˙S
14 eqid c˙Q˙d˙T=c˙Q˙d˙T
15 eqid c˙R˙d˙U=c˙R˙d˙U
16 eqid c˙P˙d˙S˙c˙Q˙d˙T˙c˙R˙d˙U˙Y=c˙P˙d˙S˙c˙Q˙d˙T˙c˙R˙d˙U˙Y
17 1 2 3 4 5 6 7 8 9 12 13 14 15 16 dalem59 φY=ZψF˙c˙P˙d˙S˙c˙Q˙d˙T˙c˙R˙d˙U˙Y
18 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 dalem60 φY=ZψD˙E=c˙P˙d˙S˙c˙Q˙d˙T˙c˙R˙d˙U˙Y
19 17 18 breqtrrd φY=ZψF˙D˙E