Metamath Proof Explorer


Theorem dalemqrprot

Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemb.j ˙=joinK
dalemb.a A=AtomsK
Assertion dalemqrprot φQ˙R˙P=P˙Q˙R

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemb.j ˙=joinK
3 dalemb.a A=AtomsK
4 1 dalemkehl φKHL
5 1 dalemqea φQA
6 1 dalemrea φRA
7 1 dalempea φPA
8 2 3 hlatjrot KHLQARAPAQ˙R˙P=P˙Q˙R
9 4 5 6 7 8 syl13anc φQ˙R˙P=P˙Q˙R