Metamath Proof Explorer


Theorem dalemyeb

Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemyeb.o O=LPlanesK
Assertion dalemyeb φYBaseK

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemyeb.o O=LPlanesK
3 1 dalemyeo φYO
4 eqid BaseK=BaseK
5 4 2 lplnbase YOYBaseK
6 3 5 syl φYBaseK