Metamath Proof Explorer


Theorem lplnbase

Description: A lattice plane is a lattice element. (Contributed by NM, 17-Jun-2012)

Ref Expression
Hypotheses lplnbase.b B=BaseK
lplnbase.p P=LPlanesK
Assertion lplnbase XPXB

Proof

Step Hyp Ref Expression
1 lplnbase.b B=BaseK
2 lplnbase.p P=LPlanesK
3 n0i XP¬P=
4 2 eqeq1i P=LPlanesK=
5 3 4 sylnib XP¬LPlanesK=
6 fvprc ¬KVLPlanesK=
7 5 6 nsyl2 XPKV
8 eqid K=K
9 eqid LLinesK=LLinesK
10 1 8 9 2 islpln KVXPXBxLLinesKxKX
11 10 simprbda KVXPXB
12 7 11 mpancom XPXB