Metamath Proof Explorer


Theorem islpln

Description: The predicate "is a lattice plane". (Contributed by NM, 16-Jun-2012)

Ref Expression
Hypotheses lplnset.b B=BaseK
lplnset.c C=K
lplnset.n N=LLinesK
lplnset.p P=LPlanesK
Assertion islpln KAXPXByNyCX

Proof

Step Hyp Ref Expression
1 lplnset.b B=BaseK
2 lplnset.c C=K
3 lplnset.n N=LLinesK
4 lplnset.p P=LPlanesK
5 1 2 3 4 lplnset KAP=xB|yNyCx
6 5 eleq2d KAXPXxB|yNyCx
7 breq2 x=XyCxyCX
8 7 rexbidv x=XyNyCxyNyCX
9 8 elrab XxB|yNyCxXByNyCX
10 6 9 bitrdi KAXPXByNyCX