Metamath Proof Explorer


Theorem islpln4

Description: The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012)

Ref Expression
Hypotheses lplnset.b B = Base K
lplnset.c C = K
lplnset.n N = LLines K
lplnset.p P = LPlanes K
Assertion islpln4 K A X B X P y N y C X

Proof

Step Hyp Ref Expression
1 lplnset.b B = Base K
2 lplnset.c C = K
3 lplnset.n N = LLines K
4 lplnset.p P = LPlanes K
5 1 2 3 4 islpln K A X P X B y N y C X
6 5 baibd K A X B X P y N y C X