Metamath Proof Explorer


Theorem islpln4

Description: The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012)

Ref Expression
Hypotheses lplnset.b
|- B = ( Base ` K )
lplnset.c
|- C = ( 
lplnset.n
|- N = ( LLines ` K )
lplnset.p
|- P = ( LPlanes ` K )
Assertion islpln4
|- ( ( K e. A /\ X e. B ) -> ( X e. P <-> E. y e. N y C X ) )

Proof

Step Hyp Ref Expression
1 lplnset.b
 |-  B = ( Base ` K )
2 lplnset.c
 |-  C = ( 
3 lplnset.n
 |-  N = ( LLines ` K )
4 lplnset.p
 |-  P = ( LPlanes ` K )
5 1 2 3 4 islpln
 |-  ( K e. A -> ( X e. P <-> ( X e. B /\ E. y e. N y C X ) ) )
6 5 baibd
 |-  ( ( K e. A /\ X e. B ) -> ( X e. P <-> E. y e. N y C X ) )