Metamath Proof Explorer


Theorem lplnset

Description: The set of lattice planes in a Hilbert lattice. (Contributed by NM, 16-Jun-2012)

Ref Expression
Hypotheses lplnset.b B = Base K
lplnset.c C = K
lplnset.n N = LLines K
lplnset.p P = LPlanes K
Assertion lplnset K A P = x B | y N y C x

Proof

Step Hyp Ref Expression
1 lplnset.b B = Base K
2 lplnset.c C = K
3 lplnset.n N = LLines K
4 lplnset.p P = LPlanes K
5 elex K A K V
6 fveq2 k = K Base k = Base K
7 6 1 eqtr4di k = K Base k = B
8 fveq2 k = K LLines k = LLines K
9 8 3 eqtr4di k = K LLines k = N
10 fveq2 k = K k = K
11 10 2 eqtr4di k = K k = C
12 11 breqd k = K y k x y C x
13 9 12 rexeqbidv k = K y LLines k y k x y N y C x
14 7 13 rabeqbidv k = K x Base k | y LLines k y k x = x B | y N y C x
15 df-lplanes LPlanes = k V x Base k | y LLines k y k x
16 1 fvexi B V
17 16 rabex x B | y N y C x V
18 14 15 17 fvmpt K V LPlanes K = x B | y N y C x
19 4 18 syl5eq K V P = x B | y N y C x
20 5 19 syl K A P = x B | y N y C x