Metamath Proof Explorer


Theorem lplnbase

Description: A lattice plane is a lattice element. (Contributed by NM, 17-Jun-2012)

Ref Expression
Hypotheses lplnbase.b
|- B = ( Base ` K )
lplnbase.p
|- P = ( LPlanes ` K )
Assertion lplnbase
|- ( X e. P -> X e. B )

Proof

Step Hyp Ref Expression
1 lplnbase.b
 |-  B = ( Base ` K )
2 lplnbase.p
 |-  P = ( LPlanes ` K )
3 n0i
 |-  ( X e. P -> -. P = (/) )
4 2 eqeq1i
 |-  ( P = (/) <-> ( LPlanes ` K ) = (/) )
5 3 4 sylnib
 |-  ( X e. P -> -. ( LPlanes ` K ) = (/) )
6 fvprc
 |-  ( -. K e. _V -> ( LPlanes ` K ) = (/) )
7 5 6 nsyl2
 |-  ( X e. P -> K e. _V )
8 eqid
 |-  ( 
9 eqid
 |-  ( LLines ` K ) = ( LLines ` K )
10 1 8 9 2 islpln
 |-  ( K e. _V -> ( X e. P <-> ( X e. B /\ E. x e. ( LLines ` K ) x ( 
11 10 simprbda
 |-  ( ( K e. _V /\ X e. P ) -> X e. B )
12 7 11 mpancom
 |-  ( X e. P -> X e. B )