Metamath Proof Explorer


Theorem dath

Description: Desargues's theorem of projective geometry (proved for a Hilbert lattice). Assume each triple of atoms (points) P Q R and S T U forms a triangle (i.e. determines a plane). Assume that lines P S , Q T , and R U meet at a "center of perspectivity" C . (We also assume that C is not on any of the 6 lines forming the two triangles.) Then the atoms D = ( P .\/ Q ) ./\ ( S .\/ T ) , E = ( Q .\/ R ) ./\ ( T .\/ U ) , F = ( R .\/ P ) ./\ ( U .\/ S ) are colinear, forming an "axis of perspectivity".

Our proof roughly follows Theorem 2.7.1, p. 78 in Beutelspacher and Rosenbaum,Projective Geometry: From Foundations to Applications, Cambridge University Press (1988). Unlike them, we do not assume that C is an atom to make this theorem slightly more general for easier future use. However, we prove that C must be an atom in dalemcea .

For a visual demonstration, see the "Desargues's theorem" applet at http://www.dynamicgeometry.com/JavaSketchpad/Gallery.html . The points I, J, and K there define the axis of perspectivity.

See Theorems dalaw for Desargues's law, which eliminates all of the preconditions on the atoms except for central perspectivity. This is Metamath 100 proof #87. (Contributed by NM, 20-Aug-2012)

Ref Expression
Hypotheses dath.b B=BaseK
dath.l ˙=K
dath.j ˙=joinK
dath.a A=AtomsK
dath.m ˙=meetK
dath.o O=LPlanesK
dath.d D=P˙Q˙S˙T
dath.e E=Q˙R˙T˙U
dath.f F=R˙P˙U˙S
Assertion dath KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UF˙D˙E

Proof

Step Hyp Ref Expression
1 dath.b B=BaseK
2 dath.l ˙=K
3 dath.j ˙=joinK
4 dath.a A=AtomsK
5 dath.m ˙=meetK
6 dath.o O=LPlanesK
7 dath.d D=P˙Q˙S˙T
8 dath.e E=Q˙R˙T˙U
9 dath.f F=R˙P˙U˙S
10 1 eleq2i CBCBaseK
11 10 anbi2i KHLCBKHLCBaseK
12 11 3anbi1i KHLCBPAQARASATAUAKHLCBaseKPAQARASATAUA
13 12 3anbi1i KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UKHLCBaseKPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
14 eqid P˙Q˙R=P˙Q˙R
15 eqid S˙T˙U=S˙T˙U
16 13 2 3 4 5 6 14 15 7 8 9 dalem63 KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UF˙D˙E