Metamath Proof Explorer


Theorem decbin0

Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypothesis decbin.1 A0
Assertion decbin0 4A=22A

Proof

Step Hyp Ref Expression
1 decbin.1 A0
2 2t2e4 22=4
3 2 oveq1i 22A=4A
4 2cn 2
5 1 nn0cni A
6 4 4 5 mulassi 22A=22A
7 3 6 eqtr3i 4A=22A