Metamath Proof Explorer


Theorem decsplit0b

Description: Split a decimal number into two parts. Base case: N = 0 . (Contributed by Mario Carneiro, 16-Jul-2015) (Revised by AV, 8-Sep-2021)

Ref Expression
Hypothesis decsplit0.1 A0
Assertion decsplit0b A100+B=A+B

Proof

Step Hyp Ref Expression
1 decsplit0.1 A0
2 10nn0 100
3 2 numexp0 100=1
4 3 oveq2i A100=A1
5 1 nn0cni A
6 5 mulridi A1=A
7 4 6 eqtri A100=A
8 7 oveq1i A100+B=A+B