Metamath Proof Explorer


Definition df-adds

Description: Define surreal addition. This is the first of the field operations on the surreals. Definition from Conway p. 5. Definition from Gonshor p. 13. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Assertion df-adds Could not format assertion : No typesetting found for |- +s = norec2 ( ( x e. _V , a e. _V |-> ( ( { y | E. l e. ( _L ` ( 1st ` x ) ) y = ( l a ( 2nd ` x ) ) } u. { z | E. l e. ( _L ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a l ) } ) |s ( { y | E. r e. ( _R ` ( 1st ` x ) ) y = ( r a ( 2nd ` x ) ) } u. { z | E. r e. ( _R ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a r ) } ) ) ) ) with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cadds Could not format +s : No typesetting found for class +s with typecode class
1 vx setvar x
2 cvv class V
3 va setvar a
4 vy setvar y
5 vl setvar l
6 cleft class L
7 c1st class 1 st
8 1 cv setvar x
9 8 7 cfv class 1 st x
10 9 6 cfv class L 1 st x
11 4 cv setvar y
12 5 cv setvar l
13 3 cv setvar a
14 c2nd class 2 nd
15 8 14 cfv class 2 nd x
16 12 15 13 co class l a 2 nd x
17 11 16 wceq wff y = l a 2 nd x
18 17 5 10 wrex wff l L 1 st x y = l a 2 nd x
19 18 4 cab class y | l L 1 st x y = l a 2 nd x
20 vz setvar z
21 15 6 cfv class L 2 nd x
22 20 cv setvar z
23 9 12 13 co class 1 st x a l
24 22 23 wceq wff z = 1 st x a l
25 24 5 21 wrex wff l L 2 nd x z = 1 st x a l
26 25 20 cab class z | l L 2 nd x z = 1 st x a l
27 19 26 cun class y | l L 1 st x y = l a 2 nd x z | l L 2 nd x z = 1 st x a l
28 cscut class | s
29 vr setvar r
30 cright class R
31 9 30 cfv class R 1 st x
32 29 cv setvar r
33 32 15 13 co class r a 2 nd x
34 11 33 wceq wff y = r a 2 nd x
35 34 29 31 wrex wff r R 1 st x y = r a 2 nd x
36 35 4 cab class y | r R 1 st x y = r a 2 nd x
37 15 30 cfv class R 2 nd x
38 9 32 13 co class 1 st x a r
39 22 38 wceq wff z = 1 st x a r
40 39 29 37 wrex wff r R 2 nd x z = 1 st x a r
41 40 20 cab class z | r R 2 nd x z = 1 st x a r
42 36 41 cun class y | r R 1 st x y = r a 2 nd x z | r R 2 nd x z = 1 st x a r
43 27 42 28 co class y | l L 1 st x y = l a 2 nd x z | l L 2 nd x z = 1 st x a l | s y | r R 1 st x y = r a 2 nd x z | r R 2 nd x z = 1 st x a r
44 1 3 2 2 43 cmpo class x V , a V y | l L 1 st x y = l a 2 nd x z | l L 2 nd x z = 1 st x a l | s y | r R 1 st x y = r a 2 nd x z | r R 2 nd x z = 1 st x a r
45 44 cnorec2 Could not format norec2 ( ( x e. _V , a e. _V |-> ( ( { y | E. l e. ( _L ` ( 1st ` x ) ) y = ( l a ( 2nd ` x ) ) } u. { z | E. l e. ( _L ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a l ) } ) |s ( { y | E. r e. ( _R ` ( 1st ` x ) ) y = ( r a ( 2nd ` x ) ) } u. { z | E. r e. ( _R ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a r ) } ) ) ) ) : No typesetting found for class norec2 ( ( x e. _V , a e. _V |-> ( ( { y | E. l e. ( _L ` ( 1st ` x ) ) y = ( l a ( 2nd ` x ) ) } u. { z | E. l e. ( _L ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a l ) } ) |s ( { y | E. r e. ( _R ` ( 1st ` x ) ) y = ( r a ( 2nd ` x ) ) } u. { z | E. r e. ( _R ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a r ) } ) ) ) ) with typecode class
46 0 45 wceq Could not format +s = norec2 ( ( x e. _V , a e. _V |-> ( ( { y | E. l e. ( _L ` ( 1st ` x ) ) y = ( l a ( 2nd ` x ) ) } u. { z | E. l e. ( _L ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a l ) } ) |s ( { y | E. r e. ( _R ` ( 1st ` x ) ) y = ( r a ( 2nd ` x ) ) } u. { z | E. r e. ( _R ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a r ) } ) ) ) ) : No typesetting found for wff +s = norec2 ( ( x e. _V , a e. _V |-> ( ( { y | E. l e. ( _L ` ( 1st ` x ) ) y = ( l a ( 2nd ` x ) ) } u. { z | E. l e. ( _L ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a l ) } ) |s ( { y | E. r e. ( _R ` ( 1st ` x ) ) y = ( r a ( 2nd ` x ) ) } u. { z | E. r e. ( _R ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a r ) } ) ) ) ) with typecode wff