Metamath Proof Explorer


Definition df-antisymrel

Description: Define the antisymmetric relation predicate. (Read: R is an antisymmetric relation.) (Contributed by Peter Mazsa, 24-Jun-2024)

Ref Expression
Assertion df-antisymrel AntisymRel R CnvRefRel R R -1 Rel R

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR class R
1 0 wantisymrel wff AntisymRel R
2 0 ccnv class R -1
3 0 2 cin class R R -1
4 3 wcnvrefrel wff CnvRefRel R R -1
5 0 wrel wff Rel R
6 4 5 wa wff CnvRefRel R R -1 Rel R
7 1 6 wb wff AntisymRel R CnvRefRel R R -1 Rel R