Metamath Proof Explorer
Description: Define the antisymmetric relation predicate. (Read: R is an
antisymmetric relation.) (Contributed by Peter Mazsa, 24-Jun-2024)
|
|
Ref |
Expression |
|
Assertion |
df-antisymrel |
|
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
cR |
|
1 |
0
|
wantisymrel |
|
2 |
0
|
ccnv |
|
3 |
0 2
|
cin |
|
4 |
3
|
wcnvrefrel |
|
5 |
0
|
wrel |
|
6 |
4 5
|
wa |
|
7 |
1 6
|
wb |
|