Metamath Proof Explorer


Definition df-antisymrel

Description: Define the antisymmetric relation predicate. (Read: R is an antisymmetric relation.) (Contributed by Peter Mazsa, 24-Jun-2024)

Ref Expression
Assertion df-antisymrel ( AntisymRel 𝑅 ↔ ( CnvRefRel ( 𝑅 𝑅 ) ∧ Rel 𝑅 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR 𝑅
1 0 wantisymrel AntisymRel 𝑅
2 0 ccnv 𝑅
3 0 2 cin ( 𝑅 𝑅 )
4 3 wcnvrefrel CnvRefRel ( 𝑅 𝑅 )
5 0 wrel Rel 𝑅
6 4 5 wa ( CnvRefRel ( 𝑅 𝑅 ) ∧ Rel 𝑅 )
7 1 6 wb ( AntisymRel 𝑅 ↔ ( CnvRefRel ( 𝑅 𝑅 ) ∧ Rel 𝑅 ) )