Description: Define the antisymmetric relation predicate. (Read: R is an antisymmetric relation.) (Contributed by Peter Mazsa, 24-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | df-antisymrel | |- ( AntisymRel R <-> ( CnvRefRel ( R i^i `' R ) /\ Rel R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cR | |- R |
|
1 | 0 | wantisymrel | |- AntisymRel R |
2 | 0 | ccnv | |- `' R |
3 | 0 2 | cin | |- ( R i^i `' R ) |
4 | 3 | wcnvrefrel | |- CnvRefRel ( R i^i `' R ) |
5 | 0 | wrel | |- Rel R |
6 | 4 5 | wa | |- ( CnvRefRel ( R i^i `' R ) /\ Rel R ) |
7 | 1 6 | wb | |- ( AntisymRel R <-> ( CnvRefRel ( R i^i `' R ) /\ Rel R ) ) |