Description: Define the antisymmetric relation predicate. (Read: R is an antisymmetric relation.) (Contributed by Peter Mazsa, 24-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-antisymrel | |- ( AntisymRel R <-> ( CnvRefRel ( R i^i `' R ) /\ Rel R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | |- R |
|
| 1 | 0 | wantisymrel | |- AntisymRel R |
| 2 | 0 | ccnv | |- `' R |
| 3 | 0 2 | cin | |- ( R i^i `' R ) |
| 4 | 3 | wcnvrefrel | |- CnvRefRel ( R i^i `' R ) |
| 5 | 0 | wrel | |- Rel R |
| 6 | 4 5 | wa | |- ( CnvRefRel ( R i^i `' R ) /\ Rel R ) |
| 7 | 1 6 | wb | |- ( AntisymRel R <-> ( CnvRefRel ( R i^i `' R ) /\ Rel R ) ) |