Description: Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | dfantisymrel4 | |- ( AntisymRel R <-> ( ( R i^i `' R ) C_ _I /\ Rel R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-antisymrel | |- ( AntisymRel R <-> ( CnvRefRel ( R i^i `' R ) /\ Rel R ) ) |
|
2 | relcnv | |- Rel `' R |
|
3 | relin2 | |- ( Rel `' R -> Rel ( R i^i `' R ) ) |
|
4 | 2 3 | ax-mp | |- Rel ( R i^i `' R ) |
5 | dfcnvrefrel4 | |- ( CnvRefRel ( R i^i `' R ) <-> ( ( R i^i `' R ) C_ _I /\ Rel ( R i^i `' R ) ) ) |
|
6 | 4 5 | mpbiran2 | |- ( CnvRefRel ( R i^i `' R ) <-> ( R i^i `' R ) C_ _I ) |
7 | 1 6 | bianbi | |- ( AntisymRel R <-> ( ( R i^i `' R ) C_ _I /\ Rel R ) ) |