Description: Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | dfantisymrel4 | ⊢ ( AntisymRel 𝑅 ↔ ( ( 𝑅 ∩ ◡ 𝑅 ) ⊆ I ∧ Rel 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-antisymrel | ⊢ ( AntisymRel 𝑅 ↔ ( CnvRefRel ( 𝑅 ∩ ◡ 𝑅 ) ∧ Rel 𝑅 ) ) | |
2 | relcnv | ⊢ Rel ◡ 𝑅 | |
3 | relin2 | ⊢ ( Rel ◡ 𝑅 → Rel ( 𝑅 ∩ ◡ 𝑅 ) ) | |
4 | 2 3 | ax-mp | ⊢ Rel ( 𝑅 ∩ ◡ 𝑅 ) |
5 | dfcnvrefrel4 | ⊢ ( CnvRefRel ( 𝑅 ∩ ◡ 𝑅 ) ↔ ( ( 𝑅 ∩ ◡ 𝑅 ) ⊆ I ∧ Rel ( 𝑅 ∩ ◡ 𝑅 ) ) ) | |
6 | 4 5 | mpbiran2 | ⊢ ( CnvRefRel ( 𝑅 ∩ ◡ 𝑅 ) ↔ ( 𝑅 ∩ ◡ 𝑅 ) ⊆ I ) |
7 | 1 6 | bianbi | ⊢ ( AntisymRel 𝑅 ↔ ( ( 𝑅 ∩ ◡ 𝑅 ) ⊆ I ∧ Rel 𝑅 ) ) |