Metamath Proof Explorer


Theorem dfantisymrel4

Description: Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024)

Ref Expression
Assertion dfantisymrel4 ( AntisymRel 𝑅 ↔ ( ( 𝑅 𝑅 ) ⊆ I ∧ Rel 𝑅 ) )

Proof

Step Hyp Ref Expression
1 df-antisymrel ( AntisymRel 𝑅 ↔ ( CnvRefRel ( 𝑅 𝑅 ) ∧ Rel 𝑅 ) )
2 relcnv Rel 𝑅
3 relin2 ( Rel 𝑅 → Rel ( 𝑅 𝑅 ) )
4 2 3 ax-mp Rel ( 𝑅 𝑅 )
5 dfcnvrefrel4 ( CnvRefRel ( 𝑅 𝑅 ) ↔ ( ( 𝑅 𝑅 ) ⊆ I ∧ Rel ( 𝑅 𝑅 ) ) )
6 4 5 mpbiran2 ( CnvRefRel ( 𝑅 𝑅 ) ↔ ( 𝑅 𝑅 ) ⊆ I )
7 1 6 bianbi ( AntisymRel 𝑅 ↔ ( ( 𝑅 𝑅 ) ⊆ I ∧ Rel 𝑅 ) )