Description: Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfantisymrel4 | ⊢ ( AntisymRel 𝑅 ↔ ( ( 𝑅 ∩ ◡ 𝑅 ) ⊆ I ∧ Rel 𝑅 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-antisymrel | ⊢ ( AntisymRel 𝑅 ↔ ( CnvRefRel ( 𝑅 ∩ ◡ 𝑅 ) ∧ Rel 𝑅 ) ) | |
| 2 | relcnv | ⊢ Rel ◡ 𝑅 | |
| 3 | relin2 | ⊢ ( Rel ◡ 𝑅 → Rel ( 𝑅 ∩ ◡ 𝑅 ) ) | |
| 4 | 2 3 | ax-mp | ⊢ Rel ( 𝑅 ∩ ◡ 𝑅 ) | 
| 5 | dfcnvrefrel4 | ⊢ ( CnvRefRel ( 𝑅 ∩ ◡ 𝑅 ) ↔ ( ( 𝑅 ∩ ◡ 𝑅 ) ⊆ I ∧ Rel ( 𝑅 ∩ ◡ 𝑅 ) ) ) | |
| 6 | 4 5 | mpbiran2 | ⊢ ( CnvRefRel ( 𝑅 ∩ ◡ 𝑅 ) ↔ ( 𝑅 ∩ ◡ 𝑅 ) ⊆ I ) | 
| 7 | 1 6 | bianbi | ⊢ ( AntisymRel 𝑅 ↔ ( ( 𝑅 ∩ ◡ 𝑅 ) ⊆ I ∧ Rel 𝑅 ) ) |