Metamath Proof Explorer


Theorem dfantisymrel5

Description: Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024)

Ref Expression
Assertion dfantisymrel5 ( AntisymRel 𝑅 ↔ ( ∀ 𝑥𝑦 ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ∧ Rel 𝑅 ) )

Proof

Step Hyp Ref Expression
1 df-antisymrel ( AntisymRel 𝑅 ↔ ( CnvRefRel ( 𝑅 𝑅 ) ∧ Rel 𝑅 ) )
2 relcnv Rel 𝑅
3 relin2 ( Rel 𝑅 → Rel ( 𝑅 𝑅 ) )
4 2 3 ax-mp Rel ( 𝑅 𝑅 )
5 dfcnvrefrel5 ( CnvRefRel ( 𝑅 𝑅 ) ↔ ( ∀ 𝑥𝑦 ( 𝑥 ( 𝑅 𝑅 ) 𝑦𝑥 = 𝑦 ) ∧ Rel ( 𝑅 𝑅 ) ) )
6 4 5 mpbiran2 ( CnvRefRel ( 𝑅 𝑅 ) ↔ ∀ 𝑥𝑦 ( 𝑥 ( 𝑅 𝑅 ) 𝑦𝑥 = 𝑦 ) )
7 brcnvin ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ( 𝑅 𝑅 ) 𝑦 ↔ ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ) )
8 7 el2v ( 𝑥 ( 𝑅 𝑅 ) 𝑦 ↔ ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) )
9 8 imbi1i ( ( 𝑥 ( 𝑅 𝑅 ) 𝑦𝑥 = 𝑦 ) ↔ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) )
10 9 2albii ( ∀ 𝑥𝑦 ( 𝑥 ( 𝑅 𝑅 ) 𝑦𝑥 = 𝑦 ) ↔ ∀ 𝑥𝑦 ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) )
11 6 10 bitri ( CnvRefRel ( 𝑅 𝑅 ) ↔ ∀ 𝑥𝑦 ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) )
12 1 11 bianbi ( AntisymRel 𝑅 ↔ ( ∀ 𝑥𝑦 ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ∧ Rel 𝑅 ) )